5.1 Node Classification/Regression
One of the most popular and widely adopted tasks for graph neural networks is node classification, where each node in the training/validation/test set is assigned a ground truth category from a set of predefined categories. Node regression is similar, where each node in the training/validation/test set is assigned a ground truth number.
节点分类是图神经网络最受欢迎和广泛采用的任务之一,其中训练/验证/测试集中的每个节点都从一组预定义的类别中分配一个ground truth类别。节点回归类似,训练/验证/测试集中的每个节点都被分配一个地面真值。
Overview
To classify nodes, graph neural network performs message passing discussed in Chapter 2: Message Passing to utilize the node’s own features, but also its neighboring node and edge features. Message passing can be repeated multiple rounds to incorp

本文详细介绍了图神经网络的基础概念,包括图、节点和边的特征,以及如何在DGL上使用图神经网络进行节点分类。文章涵盖了消息传递API、模型实现、训练循环,特别强调了异构图的处理和边缘预测任务。此外,还讨论了在图上构建多层神经网络模型的方法和训练技巧,包括批处理图和邻域采样在节点分类、边缘分类和链路预测任务中的应用。
最低0.47元/天 解锁文章
2005

被折叠的 条评论
为什么被折叠?



