图神经网络:dgl官方教程( 一 )

本文详细介绍了图神经网络的基础概念,包括图、节点和边的特征,以及如何在DGL上使用图神经网络进行节点分类。文章涵盖了消息传递API、模型实现、训练循环,特别强调了异构图的处理和边缘预测任务。此外,还讨论了在图上构建多层神经网络模型的方法和训练技巧,包括批处理图和邻域采样在节点分类、边缘分类和链路预测任务中的应用。
摘要由CSDN通过智能技术生成

1.1 关于图的基本概念

1.2 图、节点和边

1.3 节点和边的特征

1.4 从外部源创建图

1.5 异构图

1.6 在GPU上使用DGLGraph


2.1 内置函数和消息传递API

2.2 编写高效的消息传递代码

2.3 在图的一部分上进行消息传递

2.4 在消息传递中使用边的权重

2.5 在异构图上进行消息传递


3.1 DGL NN模块的构造函数

3.2 编写DGL NN模块的forward函数

3.3 异构图上的GraphConv模块


4.1 DGLDataset类

4.2 下载原始数据(可选)

4.3 处理数据

4.4 保存和加载数据

4.5 使用ogb包导入OGB数据集


5.1 Node Classification/Regression

One of the most popular and widely adopted tasks for graph neural networks is node classification, where each node in the training/validation/test set is assigned a ground truth category from a set of predefined categories. Node regression is similar, where each node in the training/validation/test set is assigned a ground truth number.

节点分类是图神经网络最受欢迎和广泛采用的任务之一,其中训练/验证/测试集中的每个节点都从一组预定义的类别中分配一个ground truth类别。节点回归类似,训练/验证/测试集中的每个节点都被分配一个地面真值。

Overview

To classify nodes, graph neural network performs message passing discussed in Chapter 2: Message Passing to utilize the node’s own features, but also its neighboring node and edge features. Message passing can be repeated multiple rounds to incorp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>