机器学习--Lasso回归(LassoRegression)

Lasso回归是一种线性模型,通过引入l1正则化项来鼓励稀疏解,减少模型对变量的依赖。它在数据分析中用于简化模型,选择重要特征。

机器学习–LassoRegression

基本概念

Lasso 是拟合稀疏系数的线性模型。 它在一些情况下是有用的,因为它倾向于使用具有较少参数值的情况,有效地减少给定解决方案所依赖变量的数量。 在线性模型基础上,它增加了一个带有 l1l_1l1 先验的正则化项,可以表示为:
minw12nsample∥wTx−y∥22+α∥w∥1\mathop{min}\limits_{w}\frac{1}{2n_{sample}}\Vert w^Tx -y\Vert_2^2 + \alpha\Vert w\Vert_1wmin2n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值