【论文笔记】AlignedReID: Surpassing Human-Level Performance in Person Re-Identification

本文介绍了AlignedReID算法在行人再识别(Person Re-Identification)领域的突破,该算法解决了传统方法中姿态变化、遮挡等问题,通过自动局部对齐和全局特征学习,无需额外监督和姿态估计。利用相互学习方法提高模型性能,从而超越人类表现。
摘要由CSDN通过智能技术生成

1Introduction

  • 行人识别的挑战

在不同时间地点,识别同一个人

在多摄像头或照片中,追踪同一个人

图像库中搜索行人

相册照片聚类

商店访客分析

难点:variations in pose, viewpoints illumination, and occlusion

  • 传统解决方案:

专注于低水平的特征,例如颜色、形状和局部描述

深度学习CNN:通过各种度量学习loss端到端的学习特征

  Contrastive loss, triplet loss, 改进的triplet loss , quadruplet loss , and triplet hard loss

  • 基于CNN学习全局特征的方法,没有考虑人的空间结构,弊端:1 2 3 4

当前的解决思路:

1)local feature learning

将整个身体分成一些小部分,但是没有考虑部分对齐

无法解决上述困扰:inaccurate detection box, pose variation, and occlusion.

  1. pose estimation: additional supervision

               a pose estimation step (which is often error-prone)

  • AlignedReID算法:learns a global feature

                在学习期间会进行自动局部对齐,并且不需要额外的监督和姿态估计

学习阶段:

two branches for learning a global feature and local features jointly

local branch:a shortest path loss 来 align local parts

inference stage:仅提取全局特征

metric learning setting :(研究物体间距离):采用mutual learning approach 让两个两个模型互相学习更好的表示

结合了AlignedReID和相互学习:战胜了其他模型以及人类的表现

 

2Related Work

  • Metric Learning:

将原始图像转化成嵌入特征,计算出的距离作为他们的相似度

主要的方法技巧:

Triplet loss 会减小正负样本对的差距。通过hard mining 为训练模型选择合适的样本是有效的。将softmax loss 和metric learning loss 结合起来加速收敛也是普遍的方法

  • Feature Alignments:

学习的全局特征来你表示行人图像,但是忽视了图像的空间局部信息

一些模型尝试将图片分为多个部分学习局部信息,但是因为没有对齐依然不能解决检测框不准确,遮挡以及姿态错位的问题

近期流行的alignments方法:

pose estimation 例如,姿势不变嵌入(PIE)将行人与标准姿势对齐,以减少姿势[52

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值