flask接口中request.json 接受到的值为 (Ellipsis, Ellipsis) 【代码】flask接口中request.json 接受到的值为 (Ellipsis, Ellipsis)
基于Centos7镜像安装ffmpeg 注意:由于NuxDextop可能会与以他第三方库相冲突,因此,如果你启用了除了EPEL的其他第三方库,强烈建议你将NuxDextop仓库设置成”defaultoff”(默认关闭)状态。将文件中的enabled=1改成enabled=0,然后保存。添加其他第三方仓库遵循同样的操作原则!安装ffmpeg则应该。
Transformers中不同数据收集器的使用场景 DataCollator:使用场景:当你的训练数据没有特定的格式或需要自定义数据收集逻辑时,可以使用DataCollator来自定义数据收集过程。示例:适用于自定义数据收集逻辑的场景,需要根据具体任务进行数据处理和整合。DataCollatorForLanguageModeling:使用场景:适用于训练语言模型的场景,其中目标是预测下一个词或遮蔽词。示例:适用于GPT、BERT等语言模型的预训练任务,通过遮蔽部分输入文本来预测被遮蔽的词。DataCollatorForPermutatio
wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(key=[your_api_key]) 【代码】wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(key=[your_api_key])
问题记录:transformers训练GPT2模型时报错ValueError: The model did not return a loss from the inputs, 【代码】问题记录:transformers训练GPT2模型时报错ValueError: The model did not return a loss from the inputs,
箱线图异常值检测 判断标准: 大于箱线图上须或者小于箱线图的下须的值,就是异常点。上须:Q3 + 1.5 * (Q3 - Q1)下须:Q3 ±1.5 * (Q3 - Q1)下四分位数:25%分位点所对应的值(Q1)上四分位数:75%分位点所对应的值(Q3)中位数:50%分位点所对应的值(Q2)其中 Q3 - Q1 表示四分位差。
tensorflow损失函数选择 ann.compile(optimizer=‘adam’,loss=‘sparse_categorical_crossentropy’, # 稀疏分类交叉熵损失函数。ann.compile(optimizer=‘adam’, loss=‘categorical_crossentropy’, # 分类交叉熵损失函数。三、对于多分类问题,如果标签是整数数值,如1,2,3,4,5,则使用稀疏分类交叉熵损失函数。一、对于连续值向量的回归问题。