acm 第一天:数论

数论
转载自:https://www.cnblogs.com/zyf3855923/

找素数 Miller_Rabin

#include <bits/stdc++.h>
#define maxn 10005
using namespace std;
typedef long long LL;
const int inf= 1e9;
struct Miller_Rabin
{
    LL prime[6] = {2, 3, 5, 233, 331};
    LL qmul(LL x, LL y, LL mod) {
        return x*y%mod;
        return (x * y - (long long)(x / (long double)mod * y + 1e-3) *mod + mod) % mod;
    }
    LL qpow(LL a, LL n, LL mod) {
        LL ret = 1;
        while(n) {
            if(n & 1) ret = qmul(ret, a, mod);
            a = qmul(a, a, mod);
            n >>= 1;
        }
        return ret;
    }
    bool check(LL p) {
        if (p < 2) return 0;
        if (p != 2 && p % 2 == 0) return 0;
        LL s = p - 1;
        while (!(s & 1)) s >>= 1;
        for (int i = 0; i < 5; ++i) {
            if (p == prime[i]) return 1;
            LL t = s, m = qpow(prime[i], s, p);
            while (t != p - 1 && m != 1 && m != p - 1) {
                m = qmul(m, m, p);
                t <<= 1;
            }
            if (m != p - 1 && !(t & 1)) return 0;
        }
        return 1;
    }
}Mi;

该方法可认为在10^18范围内可行。

唯一分解定理的优化:
我们要的其实是n的所有素数因子,所以我们只要预先用欧拉筛打个素数表,遍历的时候就只用遍历素数了,这样可以快一点,并且可以处理1e12以内的数。

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
int prime[10000005];
int a[1000005];
bool vis[10000005];
int cnt=0;
void primejudge(int n)
{
    memset(vis,false,sizeof(vis));
    vis[1]=true;
    int i,j;
    for(i=2;i<=n;i++)
    {
        if(!vis[i]) prime[cnt++]=i;
        for(j=0;j<cnt&&i*prime[j]<=n;j++)
        {
            vis[i*prime[j]]=true;
            if(i%prime[j]==0) break;
        }
    }
}
int main()
{
 
    primejudge(10000005);//预处理了1e7以内的素数
    ll n;
    int i,index=0;
    scanf("%lld",&n);
    for(i=0;i<cnt;i++)
    {
        while(n%prime[i]==0)
        {
            a[index++]=prime[i];
            n/=prime[i];
        }
        if(n==1) break;
    }
    if(n!=1)
    {
        a[index++]=n;//这一步的意思是。如果遍历到了1e7的素数,n还没有变为1,那么剩下的n一定是一个素数。(前提,n<1e12)
    }
    for(i=0;i<index;i++)
    {
        if(i) printf(" ");
        printf("%d",a[i]);
    }
    printf("\n");
    return 0;
}

求因子个数(不是单单质因子)

int solve(int x) //返回因子总数
{
    if(x==1) return 1;
    int up=sqrt(x),count=2;
    for(int i=2;i<=up;i++)
    {
        if(x%i==0)
        {
            if(i==up&&x/i==i) //如果两因子相同,则+1
                count+=1;
            else
                count+=2;
        }
    }
    return count;
}

快速幂

ll qpow(ll k,ll n,ll mod)
{
    ll ans=1;
    while(n>0)
    {
        if(n%2!=0) ans=ans*k%mod;
        k=k*k%mod;
        n/=2; 
    }
    return ans;
}
ll inv(ll n,ll mod)
{
    return qpow(n,mod-2,mod);
}

欧拉函数

bool vis[maxn];
int phi[maxn];
int prime[maxn];
int cnt=0;
void getphi(int n)
{
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!vis[i])
        {
            phi[i]=i-1;
            prime[cnt++]=i;
        }
        for(int j=0;j<cnt&&prime[j]*i<=n;j++)
        {
            int x=prime[j];
            vis[i*x]=true;
            if(i%x==0)
            {
                phi[i*x]=phi[i]*x;
                break;
            } else
            {
                phi[i*x]=phi[i]*phi[x];
            }
        }
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值