思维导图

2.1 引言
简单来说,伦理是建立在是非观念上的行为准则。伦理准则通常侧重于公平、尊重、责任、诚信、质量、可靠性、透明度和信任等方面。 数据处理伦理指如何以符合伦理准则的方式获取、存储、管理、使用和销毁数据。
核心概念:对人的影响、滥用的可能、数据的经济价值
语境关系图:

定义:数据处理伦理是指如何以符合道德准则及社会责任的方式去获取、存储、管理、解释、分析、应用和销毁数据。
目标:
- 定义组织中数据处理伦理规范
- 教导员工不正当处理数据会产生的企业风险
- 改变或渗透数据处理行为文化
- 监督、度量、监控和调整组织伦理准则行为
活动:
- 回顾数据处理实践
- 识别准则、方法和风险因素
- 建立数据处理伦理策略
- 找到实践差距
- 沟通和培训员工
- 监控和校正
2.2 业务驱动因素
组织构建数据处理伦理准则的主要原因是为了降低所负责的数据被员工、客户、合作伙伴滥用的风险。保护数据不受犯罪分子侵犯也是一项伦理责任,即保护数据不受黑客攻击和潜在的数据泄露。
2.3 基本概念
2.3.1 数据伦理准则
尊重他人:这个准则反映了对待人类最基本的伦理要求,即尊重个人尊严和自主权。准则还要求,人们在处于“弱势群体”的情况下,应格外注意保护他们的尊严和权利。
行善原则:第一,不伤害;第二,将利益最大化、伤害最小化。
公正:待人公平公正
GDPR准则:
| GDPR准则 | 描述 |
|---|---|
| 公平、合法、透明 | 数据主题中的个人数据应以合法、公平和透明的方式进行处理 |
| 目的限制 | 必须按照指定、明确、合法的目标去采集个人数据、并且不得将数据用于采集目标之外的方面 |
| 数据最小化 | 采集的个人数据必须足够相关,并且仅限于与处理目的相关的必要信息 |
| 准确性 | 个人数据必须准确,有必要保持最新的数据。必须采取一切合理步骤,确保在完成个人数据处理后能及时删除或更正不准确的个人数据。 |
| 存储限制 | 数据必须以可以识别的数据主体(个人)的形式保存,保存时间不超过处理个人数据所需的时间 |
| 诚信保密 | 必须确保个人数据等到安全妥善的处理,包括使用适当技术和组织方法防止数据被擅自或非法处理,防止意外丢失,被破坏或摧毁等 |
| 问责制度 | 控制数据的人员应负责并能够证明符合上述这些原则 |
违背伦理进行数据处理的风险:
- 时机选择
- 可视化误导
- 定义不清晰或无效的比较
- 偏见
- 预设结论的数据采集
- 预感和搜索
- 片面抽样方法
- 背景和文化
- 转换和集成数据
- 数据的混淆和修订
本文探讨了数据处理中的伦理问题,强调了尊重、公正、行善等基本准则,并阐述了组织制定伦理规范以防止数据滥用和保护隐私的重要性。GDPR标准也被提及,以及违背伦理可能导致的问题,如误导、偏见等。
1258

被折叠的 条评论
为什么被折叠?



