LocalDevice类根据底层执行具体计算设备的不同,可以进一步派生子类:SYCLDevice(异构)、BaseGPUDevice(Cuda显卡)、ThreadPoolDevice(CPU设备)、XlaDevice(支持xla的设备?)。
其中ThreadPoolDevice是针对CPU设备的类,主要重写了allocator与张量拷贝创建相关操作,其下还有GPUCompatibleCPUDevice的子类,主要用于GPU兼容CPU的设备(配有GPU的PC?),
BaseGPUDevice针对cuda设备(Nvida显卡)重写了Compute相关方法,派生子类GPUDevice类,与
GPUCompatibleCPUDevice类类似,明确获取GPUAllocator。
SYCLDevice为针对opencl设备(异构设备),
XlaDevice针对支持xlaDevice的设备.....
ThreadPoolDevice类,重写了Allocator与tensor拷贝创建相关的方法
// CPU device implementation.
class ThreadPoolDevice : public LocalDevice {
public:
ThreadPoolDevice(const Session
这篇博客深入探讨了TensorFlow中的设备类,包括LocalDevice的子类如SYCLDevice(异构)、BaseGPUDevice(CUDA GPU)、ThreadPoolDevice(CPU)和XlaDevice(XLA支持的设备)。重点关注了ThreadPoolDevice如何处理CPU设备的内存分配和张量拷贝,并介绍了GPUCompatibleCPUDevice,这是一个针对同时拥有GPU和CPU的系统的子类。BaseGPUDevice抽象了GPU设备的特性,特别是重写了Compute方法以适应GPU计算。GPUDevice作为BaseGPUDevice的子类,利用GPUAllocator进行显存管理。
订阅专栏 解锁全文
434

被折叠的 条评论
为什么被折叠?



