1019 数字黑洞 (20分)
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,10
4
) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
AC√
要点:
- 如果输入不足4位,需要补零
- 如果是特殊情况,直接输出并结束
- 如果作差的结果不是四位数,也需要补零
- sorted()函数可以直接对字符串进行操作,省略list()步骤,返回排序后的列表类型
- 输出不一定要用槽,有时采用print(’……’%(……))更简洁
num = input()
if len(num) < 4:
num = '0' * (4 - len(num)) + num
def kaprekar(num):
n1 = ''.join(sorted(num, reverse=True)) # 从大到小非递增
n2 = n1[::-1] # 从小到大非递减
num = str(int(n1) - int(n2))
if len(num) < 4:
num = '0' * (4 - len(num)) + num
print('%s - %s = %s'%(n1, n2, num))
if num == '6174':
return # 若if条件满足,此时num值为6174,结束递归
else:
kaprekar(num)
if num[0] == num[1] == num[2] == num[3]: # 如果该数仅由一个数字组成且该数为四位数,作特殊输出
print('%s - %s = 0000'%(num, num))
else:
kaprekar(num)
&spm=1001.2101.3001.5002&articleId=105038348&d=1&t=3&u=3866371ac0854a378484dd072e8a3bf9)
338

被折叠的 条评论
为什么被折叠?



