122. 买卖股票的最佳时机 II
题目描述:
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
- 输入: [7,1,5,3,6,4]
- 输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
- 输入: [1,2,3,4,5]
- 输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
- 输入: [7,6,4,3,1]
- 输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 3 * 10 ^ 4
0 <= prices[i] <= 10 ^ 4
难点:
只能持有一股
买入和卖出的时机
思路:
分解
假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!
class Solution {
public int maxProfit(int[] prices) {
if (prices.length <= 1) return 0;
int curDiff = 0;
int total = 0;
for (int i = 1; i < prices.length; i++) {
curDiff = prices[i] - prices[i-1];
total += Math.max(curDiff, 0);
}
return total;
}
}
时长:
10min
收获:
分解步骤
55. 跳跃游戏
题目描述:
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
- 输入: [2,3,1,1,4]
- 输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
- 输入: [3,2,1,0,4]
- 输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
难点:
跳几步无所谓,关键在于可跳的覆盖范围!
思路:
遍历数组
什么时候成功?
能达到最后一个位置
什么时候失败?
当前位置不能跳,并且之前跳的覆盖范围也没有跳过当前这个位置
class Solution {
public boolean canJump(int[] nums) {
int canReach = nums[0]; //可以跳到的位置:初始化为第一跳
for (int i = 0; i < nums.length; i++) {
if (canReach >= nums.length-1) { //成功:能达到最后一个位置
return true;
}
if (nums[i] == 0 && canReach <= i) { //失败:当前位置不能跳,并且之前跳的覆盖范围也没有跳过当前这个位置
return false;
}
canReach = Math.max(canReach, i+nums[i]); //更新覆盖范围
}
return false;
}
}
时长:
20min
收获:
分析分析
45. 跳跃游戏 II
题目描述:
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
- 输入: [2,3,1,1,4]
- 输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
说明: 假设你总是可以到达数组的最后一个位置。
难点:
怎么样去记录和更新最小跳数
思路:
要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。

class Solution {
public int jump(int[] nums) {
if (nums == null || nums.length == 0 || nums.length == 1) {
return 0;
}
int cnt = 0; //记录最小跳数
int curDistance = 0; //当前覆盖的最大区域
int maxDistance = 0; //记录最大覆盖范围
for (int i = 0; i < nums.length; i++) {
//更新最大覆盖范围
maxDistance = Math.max(maxDistance, i+nums[i]);
//再跳一步成功到达:覆盖区域包含最后一个位置
if (maxDistance >= nums.length-1) {
cnt++;
break;
}
//走到当前覆盖的最大区域时,更新下一步可达的最大区域
if (i == curDistance) {
curDistance = maxDistance;
cnt++;
}
}
return cnt;
}
}
时长:
30min
收获:
再消化吸收一下~~

被折叠的 条评论
为什么被折叠?



