代码随想录【Day37】贪心| 738. 单调递增的数字、 968. 监控二叉树

文章介绍了两个编程问题:一是找到小于或等于给定数的最大单调递增整数,提出了暴力遍历和优化的贪心算法;二是计算监控二叉树所有节点所需的最小摄像头数量,提到了问题的难度和思路。
摘要由CSDN通过智能技术生成

738. 单调递增的数字

题目链接

题目描述:
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:
输入: N = 10
输出: 9

示例 2:
输入: N = 1234
输出: 1234

示例 3:
输入: N = 332
输出: 299

说明: N 是在 [0, 10^9] 范围内的一个整数。

难点:

思路1:
暴力遍历,超时。

public int monotoneIncreasingDigits(int n) {
    if (n>=0 && n <= 9) {
        return n;
    }
    while(n > 0) {
        if (isIncrease(n)) {
            return n;
        }
        n--;
    }
    return 0;
}

public boolean isIncrease(int n) {
    char[] chars = String.valueOf(n).toCharArray();
    for (int i = 1; i < chars.length; i++) {
        if (chars[i-1] > chars[i]) {
            return false;
        }
    }
    return true;
}

思路2:
确定贪心思路

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

再举个例子,数字1000,从后向前遍历:
位置2和3,00没问题
位置1和2,00没问题
位置0和1,10,不满足非单增,记录当前i的位置
最后将记录位置i及其之后所有位置的值都赋为9

public int monotoneIncreasingDigits(int n) {
    if (n >=0 && n <= 9) return n;
    char[] chars = String.valueOf(n).toCharArray();
    int flag = chars.length;//记录需要赋值为“9”的起始位置
    for (int i = chars.length-1; i > 0; i--) {
        if (chars[i] < chars[i-1]) {
            flag = i;
            chars[i-1] -= 1;
        }
    }
    //赋值“9”
    for (int i = flag; i < chars.length; i++) {
        chars[i] = '9';
    }

    int result = Integer.parseInt(String.valueOf(chars));
    return result;
}

时长:
30min

收获:
修改数值的各位数字为递增策略


968. 监控二叉树

题目链接

题目描述:
给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

示例 1:
在这里插入图片描述

输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。

示例 2:
在这里插入图片描述

输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。

提示:
给定树的节点数的范围是 [1, 1000]。
每个节点的值都是 0。

难点:

思路:
先放一放

时间复杂度:O()
空间复杂度:O()


时长:

收获:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值