Win10-Win11 v22H2(22621.2215) 不忘初心纯净版

本文介绍了一款针对Win11的精简更新,体积更小、进程减少,主要保留了基础组件以保证系统稳定性。优化了170多项设置,支持IE浏览器并解决透明任务栏问题。提供下载链接,建议先在虚拟机测试后再部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一代Win11再次更新,使用全新的精简方案,体积更小、进程更少,组件保留的还尽量多,为了保证稳定初心的系统全部都是离线精简和优化,非二次封装。系统纯净、流畅、进程少无任何第三方软件,办公基本无影响

Windows11

保留组件:打印、蓝牙、指纹、共享、微软账户、搜索、计算器、屏幕投影、平板模式、BitLocker、远程桌面、IIS 、NFS 、IE浏览器、画图、照片、截图、防火墙、WMP、旧版组件 、hyper、Linux、Telnet
在这里插入图片描述

软件特色

纯净 无任何第三方软件。

自动跳过硬件检测,去除不满足安装条件,老爷机也能安装。

追求稳定、没有过度优化,可以正常办公。

需要用到指纹和人脸识别的,请用自建账户,Admin原生不支持;

总共优化170多项系统设置,禁用后台40多项系统不常用服务,系统流畅更胜一筹。

优化后台进程首次开机大约60个进程左右;

恢复Internet Explorer浏览器,开始菜单—所有应用 中可以打开。

独家修复恢复IE后 internet选项无法打开问题.

独家解决任务栏透明软件失效问题,此版本可正常使用TranslucentTB、TrayS等任务栏透明软件。

提供“恢复WIN10经典右键.cmd”和“恢复WIN11原版右键.cmd”。

避免以后升级到更高版本的系统,所有网络已经设置为按流量计费,检查更新后 下载补丁需经过你同意,但不影响系统给设备打驱动功能;

提供“禁止系统自动安装驱动.reg” ,不需要系统自动打驱动的 请安装系统后 立即导入即可;

系统恢复界面添加高级启动选项

使用Compact OS释放空间,C盘占用空间可减少2G左右

……

使用说明

下载链接:https://u9baoku.xyz/9560.html
备用:https://pan.quark.cn/s/a98246539562

纯搬运,未测试

请先在虚拟机内测试没问题后再进行正式环境部署安装

<think>嗯,用户给了我一个新的数据集,里面有Time、V1到V28、Amount和Class这些列。看起来和之前的结构差不多,但具体的数据可能不同。首先,我需要确认用户的需求是什么。他们可能是在处理类似信用卡交易的数据,因为常见的V1-V28是经过PCA处理的特征,Amount是交易金额,Class可能是欺诈标签(0正常,1欺诈)。用户之前可能问过类似的问题,现在换了数据集,需要同样的分析。 用户提到“根据上面相同的要求”,指的是之前的系统级指令和回答结构。我需要确保所有数学表达式用$...$,独立公式用$$...$$,语法正确,用中文回答。然后结构要清晰,分步骤解决问题,确保准确可靠。 接下来,我需要检查用户提供的数据行是否有问题。比如,数据中的数值是否有异常,比如V列的数值范围是否合理,Time是否是时间戳,Amount是否为非负数,Class是否为0或1。然后,重复值或缺失值的情况也需要考虑,不过用户只给了一行数据,可能只是示例,实际数据集中可能有很多行。 然后是数据预处理。标准化或归一化可能对V列有用,因为PCA后的特征通常已经标准化了,但可能需要再次确认。处理时间特征,比如将Time转换为小时或天数,但需要看具体业务需求。处理类别不平衡,因为欺诈交易通常很少,Class=1的比例可能极低,需要考虑过采样或欠采样。 特征工程方面,可能需要创建新特征,比如交易频率,或基于V特征的组合。但V1-V28已经是降维后的结果,可能不需要太多处理。不过可以检查特征之间的相关性,或者使用特征重要性来选择关键特征。 模型选择方面,二分类问题常用逻辑回归、随机森林、XGBoost,或者深度学习模型。由于数据可能不平衡,评估指标要用AUC-ROC、精确率、召回率、F1值等。可能需要使用交叉验证,并处理类别权重。 最后给出代码框架,帮助用户快速开始。比如用pandas加载数据,sklearn进行预处理和模型训练,然后评估。同时提醒注意事项,比如数据泄露、类别不平衡和可解释性。 需要确保回答符合格式要求,数学公式正确,结构清晰。用户可能希望得到一个详细的步骤指南,帮助他们从数据检查到模型构建的整个流程。同时要避免使用Markdown,用自然的中文分步骤说明。可能还需要提醒用户在实际应用中的注意事项,比如数据安全和合规性,但用户的数据结构看起来类似公开数据集,所以可能不需要深入这方面。</think>根据您提供的数据集格式要求,我将以结构化的方式为您分析数据特征并提供处理建议: 一、数据字段解析(共31列) $$Time,\ V1-V28,\ Amount,\ Class$$ 1. 关键特征说明 - $Time$: 交易时间戳(需转换为可解释的时间单位) - $V1-V28$: 经过PCA降维处理的匿名化特征(数值型) - $Amount$: 交易金额(需进行标准化处理) - $Class$: 二分类标签(0=正常交易,1=欺诈交易) 二、数据预处理步骤 1. 缺失值检测 $$缺失比例 = \frac{缺失样本数}{总样本数} \times 100\%$$ 建议使用插值法或删除处理 2. 异常值处理(以V1特征为例) $$IQR = Q3 - Q1$$ $$正常范围 = [Q1 - 1.5IQR,\ Q3 + 1.5IQR]$$ 3. 特征标准化(对Amount字段) $$z\text{-score} = \frac{x - \mu}{\sigma}$$ 三、建模建议流程 1. 数据划分 ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( data.drop('Class', axis=1), data['Class'], test_size=0.2, stratify=data['Class'] ) ``` 2. 推荐算法(欺诈检测场景) - 集成方法:XGBoost / LightGBM - 深度学习:Autoencoder异常检测 - 传统方法:Isolation Forest 3. 评估指标选择 $$F1\text{-score} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$ 优先关注召回率: $$Recall = \frac{TP}{TP + FN}$$ 四、注意事项 1. 类别不平衡处理 - 过采样:SMOTE - 欠采样:Tomek Links - 类别权重调整 2. 特征重要性分析 ```python import shap explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X_test) ``` 3. 部署建议 - 实时监控预测置信度: $$置信度阈值 = \frac{TPR}{FPR} \times 成本系数$$ - 建立模型本回滚机制 需要补充说明或具体实现细节吗?我可以针对某个环节提供更深入的技术解析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值