sobolev001
码龄6年
关注
提问 私信
  • 博客:50,905
    50,905
    总访问量
  • 69
    原创
  • 20,153
    排名
  • 853
    粉丝

个人简介:毕业于东北大学控制理论与控制工程专业,中国工业与应用数学学会(CSIAM)会员,中国人工智能学会(CAAI)会员,全国高校大数据联盟委员,河北省现场统计学会委员,辽宁省生物数学学会会员,东北大学秦皇岛分校数据科学与大数据技术专业负责人,大数据智慧计算综合实验室负责人,致力于大数据分析与挖掘,神经网络深度学习等相关研究

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2018-07-25
博客简介:

weixin_42794212的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    3
    当前总分
    430
    当月
    55
个人成就
  • 获得1,090次点赞
  • 内容获得1次评论
  • 获得885次收藏
创作历程
  • 69篇
    2024年
成就勋章
TA的专栏
  • ODE
    付费
    51篇
  • NA
    付费
    9篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 大数据
    etl
  • 人工智能
    机器学习深度学习神经网络tensorflow数据分析聚类集成学习迁移学习分类回归
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

微分方程(Blanchard Differential Equations 4th)-Assignment03

2dtdy​−2t2y0.tdy​−2y0.h​tCe∫2dtCe2twhere C2dtdy​−2t2yt4t3ordtdy​−2yt2tp​t2tp​tp​tAt2BtCwhere ABand Ctdyp​​2AtB2AtB−2At2BtCt2tSimplify:−2At2。
原创
发布博客 昨天 12:02 ·
6 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.3

在练习1–6中,为以下微分方程绘制斜率场:(a) 选择一些满足−2≤t≤2和−2≤y≤2的点ty,并在不使用技术手段的情况下绘制相关的斜率标记。(b) 使用HPGSolver检查这些单独的斜率标记。© 制作斜率场的更详细绘图,然后使用HPGSolver确认你的答案。有关HPGSolver和DETools包中其他程序的更多详细信息,请参阅本书封面内侧关于DETools的说明。
原创
发布博客 2024.11.20 ·
20 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.9

dtdy​−ty​2dtdy​t3​yt5dtdy​−1ty​t2dtdy​−2ty4e−t2dtdy​−1t22t​y3dtdy​−t2​yt3et解:这是一个线性非齐次微分方程。
原创
发布博客 2024.11.20 ·
16 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 5.3

哈密顿系统可以表示为:dxdt=∂H∂y,dydt=−∂H∂x\frac{dx}{dt} = \frac{\partial H}{\partial y}, \quad \frac{dy}{dt} = -\frac{\partial H}{\partial x}dtdx​=∂y∂H​,dtdy​=−∂x∂H​给定系统:dxdt=y,dydt=x3−x\frac{dx}{dt} = y, \quad \frac{dy}{dt} = x^3 - xdtdx​=y,dtdy​=x3−x我们需要验证这
原创
发布博客 2024.11.19 ·
166 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 5.1

(a) Rewrite0=2x(1−x/2)−xy,0=3y(1−y/3)−2xy.\begin{align}0 &= 2x(1-x/2) - xy, \\0 &= 3y(1 - y/3) -2xy.\end{align}00​=2x(1−x/2)−xy,=3y(1−y/3)−2xy.​​as0=2x(2−x−y),0=y(3−y−2x).\begin{align}0 & = 2x(2-x-y), \\0 & = y(3 - y-2x).\end{align}00​=2x(2−x−y),=
原创
发布博客 2024.11.19 ·
241 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 3.5

λ0​2×2AA−λ0​I20V0​, letV1​A−λ0​IV0​V1​A(a)部分我们知道λ0​是矩阵A的一个。A−λ0​I20由于λ0​是一个重根特征值,这意味着λ0​的代数重数为2,但几何重数可能小于2。A−λ0​Iλ0​λ0​如果几何重数是1,则存在一个与λ0​相关的广义特征向量,即存在一个向量V1​A−λ0​IV1​V0​并且A−λ。
原创
发布博客 2024.11.17 ·
17 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 5.2

c)dtdx​dtdy​​2−x−yy−x2​​初值条件:(a) x0​2y0​1(b) x0​0y0​−1(cx0​0y0​0dtdx​dtdy​​2−x−yy−∣x∣​​初值条件:(a) x0​−1y0​1(b) x0​2y0​1(cx0​2y0​2dtdx​dtdy​​x。
原创
发布博客 2024.11.17 ·
30 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.4

在练习1-4中,使用EulersMethod在指定的时间间隔内对给定的初始值问题执行具有给定步长t的Euler方法。你的答案应该包括一个因变量的近似值表。的三个不同的近似解。的欧拉方法在指定的时间间隔上近似解决给定的初始值问题。对练习 6 中初值问题的解进行定性分析,并将你的结论与练习 6 的结果进行比较。的三个不同的近似解。如我们在第 1.1 节的练习 12 中所见,自由落体的跳伞者的速度。是由跳伞者在跳伞过程中的姿态决定的阻力系数。比较练习 7 和练习 8 的答案,并解释你的观察结果。
原创
发布博客 2024.10.22 ·
57 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.8

dtdy​−4y9e−tdy​−4yh​Ce−4t, where Ce−tp​Ae−ttd​Ae−t−4Ae−t9e−t−Ae−t−4Ae−t9e−t−t, we get:−A−4A9⇒3A9⇒A3p​3e−ttyh​yp​Ce−4t3e−tdtdy​−4y3e−h​C。
原创
发布博客 2024.10.17 ·
552 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.2

在练习 5–24 中,找到指定微分方程的一般解。(你可能无法得到理想的形式,即左边只有因变量,右边只有自变量,但请尽量做到这一点。)5.dydt=(ty)26.dydt=t4y7.dydt=2y+18.dydt=2−y9.dydt=e−y10.dxdt=1+x211.dydt=2ty2+3y212.dydt=ty13.dydt=tt2y+y14.dydt=dydt=ty315.dydt=12y+116.dydt=2y+1t17.dydt=y(1−y)18.dydt=4t1+3y219.dvdt=t2v−2
原创
发布博客 2024.10.14 ·
792 阅读 ·
25 点赞 ·
0 评论 ·
18 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.1

放射性同位素衰变的速度与当前存在的同位素量成正比。比例常数仅取决于所使用的放射性同位素。(a) 碳 14(C-14)的半衰期是 5230 年。确定 C-14 的衰变率参数。(b) 碘 131(I-131)的半衰期是 8 天。确定 I-131 的衰变率参数。放射性同位素的半衰期是指放射性物质衰变到其原始量一半所需的时间。(a) 使用此符号,为特定放射性同位素的衰变编写一个模型。,请为 (a) 部分中的模型写出相应的初值问题。时存在的特定放射性同位素量(因变量),值使得人口处于平衡状态?
原创
发布博客 2024.10.14 ·
80 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Exercise 1.5

dydtftydtdy​ftyy1t3y_1(t) = 3y1​t3对所有ttt都是一个解,初始条件y01.y(0) = 1.y01.解包含1−2t1−2t​,因此1−2t01 - 2t > 01−2t0,即t12t21​。t∈−∞12t∈−∞21​当t→12t→21​时,1−2t1−2t​趋近于000yt→∞yt。
原创
发布博客 2024.10.10 ·
70 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 2Final Exam2022

If∫ab​fxwxdx,w(ab)(n1){wk​k0n​{xk​k0n​(a) Let wx≡1.n1n1f。
原创
发布博客 2024.09.07 ·
190 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

MATH36022 Numerical Analysis 2 Numerical Solution of ODEs – Week 11 Exercises

yn1​yn​hfxn​h/21/2yn​yn1​)).yn1​yn​hfxn​h/2yn​h/2fxn​yn​)).(c)yn1​yn​k1​fn​y′λyyn1​yn​λ2h​yn​yn1​)yn1​1−λh/21λh/2​yn​​1−λh/21λh/2​​1(12λh​12λ。
原创
发布博客 2024.09.07 ·
240 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微分方程(Blanchard Differential Equations 4th)中文版Section6.4

我们已经看到,拉普拉斯变换使我们有可能处理具有不连续强迫项的方程。在本节中,我们考虑另一种类型的不连续强制函数,称为脉冲函数。冲击强迫描述的是对系统的非常迅速的推或拉,例如锤子的敲击或爆炸的效果。举例来说,假设我们有一个满足以下方程的无外力振荡器:d2ydt2+2dydt+26y=0.\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + 26y = 0.dt2d2y​+2dtdy​+26y=0.这个方程模拟了一个单位质量附着在弹簧上的系统,弹簧常数为 262626,并在具有阻尼系
原创
发布博客 2024.09.05 ·
364 阅读 ·
10 点赞 ·
0 评论 ·
0 收藏

MATH36022 Numerical Analysis 2 Numerical Solution of ODEs – Week 8 Exercises

fab×cd→Ryf∣fxu−fxv∣≤L∣u−v∣L(afxyx−x2y−y,x∈01]y∈−11,(bfxyx​expy,x∈01y∈−11,(cfxy1−y2​1x2)x∈Ry∈−11.y′′′x−y′′xy′x−2xy2x0x≥0,y02y′01y′′03.z1​z2​。
原创
发布博客 2024.09.03 ·
569 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 2Final Exam2021

∫ab​fxwxdx.∫−11​fx1−x21/2dx≈w0​fx0​w1​fx1​.ϕ0​x1ϕ1​xxϕ2​xxtϕ2​xx2−1/4.wx1−x21/2(−11)∫−11​1−x21/2dxπ/2.f∈−11]pn​L2​fnwx1−x2−1/2(−1;1。
原创
发布博客 2024.09.03 ·
1363 阅读 ·
43 点赞 ·
0 评论 ·
9 收藏

MATH36022 Numerical Analysis 2 Numerical Integration – Week 7 Exercises

Th)Mh)Th/21/2ThMh.Th)hπ/4.(i∫0π​cos2xdxii2π1​∫02π​exp2−21​sinxdx.Th)T1T1/2T1/4)If∫01​((x−1x−0.75x−0.5x−0.25x2sin24πxdx.Tk1​T2−k−1)k≥1Tij​4j−1−14j−。
原创
发布博客 2024.09.02 ·
1120 阅读 ·
33 点赞 ·
0 评论 ·
10 收藏

MATH36022 Numerical Analysis 2 Approximation of Functions – Week 3 Exercises

−11)(1−x2−1/2Tn​xcosnarccosx)∫−11​Tn​xTm​x1−x2−1/2dx=∫π0​cosnθcosmθsinθ1​dcosθ=∫0π​cosnθcosmθdθ=∫0π​cosnθcosmθdθ=∫0π​21​cosmnθcosm−nθdθ=⎩⎨⎧​0π2π​​m。
原创
发布博客 2024.09.02 ·
1138 阅读 ·
29 点赞 ·
0 评论 ·
14 收藏

微分方程(Blanchard Differential Equations 4th)中文版Section6.3

dt2d2y​pdtdy​qyft其中p和q是常数。在第 4 章中,我们已经处理过这种形式的方程,特定的强迫函数ft。拉普拉斯变换使我们能够研究更大范围的强迫函数,包括一些具有不连续性的函数。首先,我们回顾一下正弦函数sinωt、余弦函数cosωt、以及eatsinωt和eatcosωt,这些函数在研究二阶方程时非常常见。因此,我们的第一个任务是计算这些函数的拉普拉斯变换。
原创
发布博客 2024.09.01 ·
467 阅读 ·
18 点赞 ·
0 评论 ·
6 收藏
加载更多