微分方程(Blanchard Differential Equations 4th)中文版Section1.9

1.9 INTEGRATING FACTORS FOR LINEAR EQUATIONS

在第1.8节中,我们描述了一种用于求解某些一阶非齐次线性微分方程的猜测技术。在本节中,我们将开发一种不同的分析方法来求解这些方程。相比于上一节的技术,这种方法更为通用,因此可以成功应用于更多的方程。它还避免了“猜测”。 不幸的是,该方法涉及计算一个积分,这可能会带来问题,正如我们将看到的。 此外,它对定性分析的适应性也不强。在本节的最后,我们将讨论这两种方法的优缺点。

积分因子

给定一个非齐次线性微分方程
d y d t = a ( t ) y + b ( t ) , \frac{dy}{dt} = a(t)y + b(t), dtdy=a(t)y+b(t),
我们如何找到它的一般解呢?有一个巧妙的技巧可以将这种形式的方程转化为一个可以通过积分求解的微分方程。与许多数学技术一样,这个技巧的巧妙之处可能会让你感到“我怎么能想到这样的方法呢?”需要记住的是,微分方程已经存在了300多年。经过三个世纪,数学家们能够发现并完善一种巧妙的方法来处理这些方程,这并不令人惊讶。

方法背后的思想

我们首先将非齐次方程重写为
d y d t + g ( t ) y = b ( t ) , \frac{dy}{dt} + g(t)y = b(t), dtdy+g(t)y=b(t),
其中 g ( t ) = − a ( t ) g(t) = -a(t) g(t)=a(t)。我们这样重写并改变符号的原因有两个:一是方程左侧的形式暗示了这种方法,二是将 − a ( t ) -a(t) a(t) 替换为 g ( t ) g(t) g(t) 可以避免在计算中出现许多烦人的负号。
在仔细研究这个方程一段时间后(大约几十年),我们注意到,如果视力足够差,方程左侧看起来有点像使用乘积法则进行微分时得到的结果。也就是说,乘积法则指出,函数 y ( t ) y(t) y(t) 和一个函数 μ ( t ) \mu(t) μ(t) 的乘积的导数为:
d ( μ ( t ) y ( t ) ) d t = μ ( t ) d y d t + d μ d t y ( t ) . \frac{d(\mu(t) y(t))}{dt} = \mu(t) \frac{dy}{dt} + \frac{d\mu}{dt} y(t). dtd(μ(t)y(t))=μ(t)dtdy+dtdμy(t).
注意到右侧的一项包含 d y d t \frac{dy}{dt} dtdy,另一项包含 y y y,这与我们非齐次线性方程的左侧类似。
这里是巧妙之处。将原微分方程的两边都乘以一个(尚未指定的)函数 μ ( t ) \mu(t) μ(t)。我们得到新的微分方程:
μ ( t ) d y d t + μ ( t ) g ( t ) y = μ ( t ) b ( t ) . \mu(t) \frac{dy}{dt} + \mu(t) g(t) y = \mu(t) b(t). μ(t)dtdy+μ(t)g(t)y=μ(t)b(t).
这一步通过引入 μ ( t ) \mu(t) μ(t) 函数,将方程转化为可与乘积法则相结合的形式,以便进一步分析和求解。其左侧看起来更像是两个函数的乘积的导数。现在,我们假设有一个函数 μ ( t ) \mu(t) μ(t),使得左侧实际上是乘积 μ ( t ) y ( t ) \mu(t) y(t) μ(t)y(t) 的导数。也就是说,假设我们找到了一个函数 μ ( t ) \mu(t) μ(t) 使其满足:
d ( μ ( t ) y ( t ) ) d t = μ ( t ) d y d t + μ ( t ) g ( t ) y . \frac{d(\mu(t) y(t))}{dt} = \mu(t) \frac{dy}{dt} + \mu(t) g(t) y. dtd(μ(t)y(t))=μ(t)dtdy+μ(t)g(t)y.
那么新的微分方程就变成:
d ( μ ( t ) y ( t ) ) d t = μ ( t ) b ( t ) . \frac{d(\mu(t) y(t))}{dt} = \mu(t) b(t). dtd(μ(t)y(t))=μ(t)b(t).
这样,通过选择合适的 μ ( t ) \mu(t) μ(t),我们将原方程转化为一个可以直接积分求解的方程,从而简化了求解过程。
这有什么帮助呢?我们可以对这个方程的两边关于 t t t 积分,得到:
μ ( t ) y ( t ) = ∫ μ ( t ) b ( t ) d t , \mu(t) y(t) = \int \mu(t) b(t)dt, μ(t)y(t)=μ(t)b(t)dt
因此,
y ( t ) = 1 μ ( t ) ∫ μ ( t ) b ( t ) d t . y(t) = \frac{1}{\mu(t)} \int \mu(t) b(t) dt. y(t)=μ(t)1μ(t)b(t)dt.
也就是说,假设我们有这样的 μ ( t ) \mu(t) μ(t) 并且能够计算 ∫ μ ( t ) b ( t )   d t \int \mu(t) b(t) \ dt μ(t)b(t) dt,我们就可以计算出解 y ( t ) y(t) y(t)。通过这种方法,我们可以将原本复杂的微分方程化简为一个可以通过积分求解的形式,从而得到解的表达式。

寻找积分因子

这种 y ( t ) y(t) y(t) 的推导基于一个相当大的假设。那么,我们如何找到一个函数 μ ( t ) \mu(t) μ(t) 使得
d ( μ ( t ) y ( t ) ) d t = μ ( t ) d y d t + μ ( t ) g ( t ) y ( t ) \frac{d(\mu(t) y(t))}{dt} = \mu(t) \frac{dy}{dt} + \mu(t) g(t) y(t) dtd(μ(t)y(t))=μ(t)dtdy+μ(t)g(t)y(t)

成立呢?
将乘积法则应用于左侧,我们可以看到所需的 μ ( t ) \mu(t) μ(t) 必须满足:

μ ( t ) d y d t + d μ d t y ( t ) = μ ( t ) d y d t + μ ( t ) g ( t ) y ( t ) . \mu(t) \frac{dy}{dt} + \frac{d\mu}{dt} y(t) = \mu(t) \frac{dy}{dt} + \mu(t) g(t) y(t). μ(t)dtdy+dtdμy(t)=μ(t)dtdy+μ(t)g(t)y(t).

在两边同时消去 μ ( t ) d y d t \mu(t) \frac{dy}{dt} μ(t)dtdy 项,得到:
d μ d t y ( t ) = μ ( t ) g ( t ) y ( t ) . \frac{d\mu}{dt} y(t) = \mu(t) g(t) y(t). dtdμy(t)=μ(t)g(t)y(t).
因此,如果我们找到一个函数 μ ( t ) \mu(t) μ(t) 满足方程:

d μ d t = μ ( t ) g ( t ) , \frac{d\mu}{dt} = \mu(t) g(t), dtdμ=μ(t)g(t),

就可以得到所需的 μ ( t ) \mu(t) μ(t)。然而,最后这个方程实际上就是 d μ d t = g ( t ) μ \frac{d\mu}{dt} = g(t)\mu dtdμ=g(t)μ,这是一个齐次线性微分方程,而我们已经知道其解为:
μ ( t ) = e ∫ g ( t )   d t . \mu(t) = e^{\int g(t) \, dt}. μ(t)=eg(t)dt.
(参见第113页以了解此解的推导过程。)
根据给定的 μ ( t ) μ(t) μ(t) 公式,我们现在可以看到这个策略是可行的。函数 μ ( t ) μ(t) μ(t) 被称为原非齐次方程的积分因子,因为如果我们将该方程乘以积分因子 μ ( t ) μ(t) μ(t),就可以通过积分来解方程。换句话说,当我们想要确定方程 d y d t + g ( t ) y = b ( t ) \frac{dy}{dt} + g(t)y = b(t) dtdy+g(t)y=b(t) 的显式解时,我们首先计算积分因子 μ ( t ) μ(t) μ(t),然后通过将方程两边都乘以 μ ( t ) μ(t) μ(t) 并进行积分来求解方程。因为我们只需要一个积分因子 μ ( t ) μ(t) μ(t) 来解方程,所以我们选择常数是最方便的。这个选择通常是零。为了看到这种方法的作用,让我们看一些例子。这个方法看起来很一般。然而,因为有两个积分要计算,我们在寻求显式解时会遇到一些困难。

完全成功

考虑非齐次线性方程
d y d t + 2 t y = t − 1. \frac{dy}{dt} + \frac{2}{t} y = t - 1. dtdy+t2y=t1.
首先,我们计算积分因子
μ ( t ) = e ∫ g ( t ) d t = e ∫ 2 t d t = e 2 ln ⁡ t = e ln ⁡ ( t 2 ) = t 2 . \mu(t) = e^{\int g(t) dt} = e^{\int \frac{2}{t} dt} = e^{2 \ln t} = e^{\ln(t^2)} = t^2. μ(t)=eg(t)dt=et2dt=e2lnt=eln(t2)=t2.
记住,这种方法背后的思路是将微分方程的两边都乘以 μ ( t ) \mu(t) μ(t),使得新方程的左边是乘积法则的结果。在这个例子中,乘以 μ ( t ) = t 2 \mu(t) = t^2 μ(t)=t2 得到
t 2 d y d t + 2 t y = t 2 ( t − 1 ) . t^2 \frac{dy}{dt} + 2ty = t^2(t - 1). t2dtdy+2ty=t2(t1).
注意,左边是 t 2 t^2 t2 y ( t ) y(t) y(t) 的乘积的导数。换句话说,这个方程等同于
d d t ( t 2 y ) = t 3 − t 2 . \frac{d}{dt} (t^2 y) = t^3 - t^2. dtd(t2y)=t3t2.
t t t 进行两边积分得到
t 2 y = t 4 4 − t 3 3 + k , t^2 y = \frac{t^4}{4} - \frac{t^3}{3} + k, t2y=4t43t3+k,
其中 k k k 是一个任意常数。通解为
y ( t ) = t 2 4 − t 3 + k t 2 . y(t) = \frac{t^2}{4} - \frac{t}{3} + \frac{k}{t^2}. y(t)=4t23t+t2k.
当然,我们可以通过将这些函数代入方程来验证它们确实满足微分方程。
在这个例子中,值得注意的是积分常数的作用。当我们计算 μ ( t ) = t 2 \mu(t) = t^2 μ(t)=t2 时,我们忽略了常数,因为我们只需要一个积分因子。然而,在我们将原方程的两边乘以 μ ( t ) \mu(t) μ(t) 并积分后,右边的积分常数是必须要包括的。如果我们忽略了那个常数,我们就只计算了非齐次方程的一个解,而不是通解。

积分中的问题

前面的例子是经过精心选择的。另一个看起来不太难的线性方程是
d y d t = t 2 y + t − 1. \frac{dy}{dt} = t^2 y + t - 1. dtdy=t2y+t1.
我们将微分方程重写为
d y d t − t 2 y = t − 1 , \frac{dy}{dt} - t^2 y = t - 1, dtdyt2y=t1,
并计算积分因子
μ ( t ) = e ∫ − t 2 d t = e − t 3 / 3 . \mu(t) = e^{\int -t^2 dt} = e^{-t^3/3}. μ(t)=et2dt=et3/3.
接下来,我们将两边乘以 μ ( t ) \mu(t) μ(t) 并得到
e − t 3 / 3 d y d t − t 2 e − t 3 / 3 y = e − t 3 / 3 ( t − 1 ) . e^{-t^3/3} \frac{dy}{dt} - t^2e^{-t^3/3} y = e^{-t^3/3}(t - 1). et3/3dtdyt2et3/3y=et3/3(t1).
注意,左边是 e − t 3 / 3 e^{-t^3/3} et3/3 y ( t ) y(t) y(t) 的乘积的导数,所以我们有
d d t ( e − t 3 / 3 y ) = e − t 3 / 3 ( t − 1 ) . \frac{d}{dt}\left(e^{-t^3/3} y\right) = e^{-t^3/3}(t - 1). dtd(et3/3y)=et3/3(t1).
对两边进行积分得到
e − t 3 / 3 y = ∫ e − t 3 / 3 ( t − 1 ) d t e^{-t^3/3} y = \int e^{-t^3/3}(t - 1) dt et3/3y=et3/3(t1)dt
但这时我们陷入了困境。事实证明,这个方程右边的积分无法用熟悉的函数(如 sin ⁡ \sin sin cos ⁡ \cos cos ln ⁡ \ln ln 等)表示,因此我们无法得到解的显式公式。这个例子表明了涉及显式积分计算的技术可能会出现的问题。即使看起来合理的函数也可能很快导致复杂的积分因子和积分。另一方面,我们可以用关于 t t t 的积分来表达解,尽管许多积分无法显式计算,但许多积分仍然是可以计算的。事实上,正如我们之前提到的,有许多计算机程序在计算此技术中涉及的不定积分方面非常擅长。

混合问题再探

在第1.2节中,我们研究了溶液中某物质浓度的模型。通常,在这些问题中,我们考虑一个容器,其中包含一定量的流体(例如水或空气),并且有某种污染物以一定的速度被加入到流体中。流体在整个过程中始终保持充分混合。如果流体的总体积保持不变,那么污染物的量所满足的微分方程是自治的,可以通过分离变量法或利用扩展线性原理与猜测技巧来解。如果流体的总体积随时间变化,则微分方程是非自治的,必须使用积分因子来求解。

一个受污染的池塘

考虑一个初始体积为10,000立方米的池塘。假设在 t = 0 t = 0 t=0时,池塘中的水是干净的,并且有两条流入池塘的河流,分别为 A 河和 B 河,以及一条流出池塘的河流 C 河(见图1.97)。假设每天有500立方米的水从 A 河流入池塘,每天有750立方米的水从 B 河流入池塘,每天有1250立方米的水通过 C 河流出池塘。

t = 0 t = 0 t=0时,从A河流入池塘的水被道路盐污染,浓度为每1000立方米水中含5千克盐。假设池塘中的水混合均匀,因此在任何时间点,池塘中盐的浓度是恒定的。更糟的是,假设在 t = 0 t = 0 t=0时,有人开始以每天50立方米的速度向池塘中倾倒垃圾。垃圾沉积在池塘底部,使池塘的体积每天减少50立方米。为了应对垃圾的进入,通过 C 河流出的水的流量增加到每天1300立方米,池塘的水位不会溢出。

这个描述非常类似于我们之前研究的混合问题(其中“池塘”替换了“罐子”,“河流”替换了“管道”)。这里的新因素是总体积不是恒定的。由于垃圾的倾倒,池塘的体积每天减少50立方米。

如果令 S ( t ) S(t) S(t)表示时间 t t t时池塘中的盐的量(以千克为单位),那么 d S d t \frac{dS}{dt} dtdS表示盐进入池塘的速率与盐流出池塘的速率之差。
在这里插入图片描述图 1.97 具有三股水流的池塘示意图

盐的流入与流出

盐只从 A 河流入池塘。盐的流入速率是其在水中的浓度与水通过 A 河流入池塘的速率的乘积。由于浓度为每1000立方米水中5千克盐,而从 A 河流入池塘的水的速率为每天500立方米,因此盐流入池塘的速率为 ( 500 ) × ( 5 / 1000 ) = 5 / 2 (500) \times (5/1000) = 5/2 (500)×(5/1000)=5/2千克每天。盐通过 C 河流出池塘的速率是池塘中盐的浓度与水流出池塘的速率的乘积。水流出的速率为每天1300立方米。为了确定浓度,我们注意到它是池塘中盐量 S S S与池塘体积 V V V的商。因为池塘的初始体积是10,000立方米,并且每天减少50立方米,我们知道 V ( t ) = 10 , 000 − 50 t V(t) = 10,000 - 50t V(t)=10,00050t。因此,浓度是 S / ( 10 , 000 − 50 t ) S/(10,000 - 50t) S/(10,00050t),盐流出池塘的速率是:

1300 × S 10 , 000 − 50 t , \frac{1300 \times S}{10,000 - 50t}, 10,00050t1300×S

这可以简化为:

26 S 200 − t 。 \frac{26S}{200 - t}。 200t26S

因此,描述池塘中盐量的微分方程为:

d S d t = 5 2 − 26 S 200 − t 。 \frac{dS}{dt} = \frac{5}{2} - \frac{26S}{200 - t}。 dtdS=25200t26S

该模型仅在池塘中有水的情况下有效,也就是说,只要体积 V ( t ) = 10 , 000 − 50 t V(t) = 10,000 - 50t V(t)=10,00050t是正数。这意味着微分方程在 0 ≤ t < 200 0 \leq t < 200 0t<200的范围内有效。因为在 t = 0 t = 0 t=0时水是干净的,所以初始条件为 S ( 0 ) = 0 S(0) = 0 S(0)=0

由于该方程是非自治的,我们使用积分因子来求解这个初值问题。将微分方程重写为:

d S d t + 26 200 − t S = 5 2 , \frac{dS}{dt} + \frac{26}{200 - t}S = \frac{5}{2}, dtdS+200t26S=25

这表明积分因子为:

μ ( t ) = e ∫ 26 200 − t d t = e − 26 ln ⁡ ( 200 − t ) = e ln ⁡ [ ( 200 − t ) − 26 ] = ( 200 − t ) − 26 。 \mu(t) = e^{\int \frac{26}{200-t} dt} = e^{-26 \ln(200-t)} = e^{\ln[(200-t)^{-26}]} = (200 - t)^{-26}。 μ(t)=e200t26dt=e26ln(200t)=eln[(200t)26]=(200t)26

将两边乘以 μ ( t ) \mu(t) μ(t)得到:

( 200 − t ) − 26 d S d t + 26 ( 200 − t ) − 27 S = 5 2 ( 200 − t ) − 26 。 (200 - t)^{-26} \frac{dS}{dt} + 26(200 - t)^{-27} S = \frac{5}{2} (200 - t)^{-26}。 (200t)26dtdS+26(200t)27S=25(200t)26

根据乘积法则,这个方程等同于:

d d t [ ( 200 − t ) − 26 S ] = 5 2 ( 200 − t ) − 26 。 \frac{d}{dt} \left[(200 - t)^{-26} S \right] = \frac{5}{2} (200 - t)^{-26}。 dtd[(200t)26S]=25(200t)26

对两边进行积分得到:

( 200 − t ) − 26 S = 5 2 ∫ ( 200 − t ) − 26 d t = 5 2 × ( 200 − t ) − 25 25 + c , (200 - t)^{-26} S = \frac{5}{2} \int (200 - t)^{-26} dt = \frac{5}{2} \times \frac{(200 - t)^{-25}}{25} + c, (200t)26S=25(200t)26dt=25×25(200t)25+c

其中, c c c是一个积分常数。

解出 S ( t ) S(t) S(t)的通解

解出 S ( t ) S(t) S(t)后,我们得到通解:

S ( t ) = 200 − t 10 + c ( 200 − t ) 26 。 S(t) = \frac{200 - t}{10} + c(200 - t)^{26}。 S(t)=10200t+c(200t)26

使用初始条件 S ( 0 ) = 0 S(0) = 0 S(0)=0,我们发现 c = − 20 20 0 26 c = -\frac{20}{200^{26}} c=2002620,因此该初值问题的特解为:

S ( t ) = 200 − t 10 − 20 ( 200 − t 200 ) 26 。 S(t) = \frac{200 - t}{10} - 20 \left(\frac{200 - t}{200}\right)^{26}。 S(t)=10200t20(200200t)26

尽管这个表达式看起来很不寻常,尤其是由于巨大的数字 20 0 26 200^{26} 20026,但图形显示其行为并不特别(参见图1.98)。池塘中的盐量上升得相当快,在 t ≈ 25 t \approx 25 t25时接近 S = 20 S = 20 S=20的最大值。此后,盐的量几乎线性地减少,到 t = 200 t = 200 t=200时变为零。

解的行为分析

如果我们回想一下,池塘一开始不含盐,并且最终完全被垃圾填满(在 t = 200 t = 200 t=200 时它既不含盐也不含水),这种解的行为是相当合理的。如上所述,池塘中盐的浓度为 C ( t ) = S ( t ) V ( t ) = S ( t ) 10 , 000 − 50 t C(t) = \frac{S(t)}{V(t)} = \frac{S(t)}{10,000 - 50t} C(t)=V(t)S(t)=10,00050tS(t)。绘制 C ( t ) C(t) C(t) 的图形,我们看到它渐近地接近每立方米0.002千克,即使水位在下降(参见图1.99)。
在这里插入图片描述图1.98 初值问题 d S / d t = 5 / 2 − 26 S / ( 200 − t ) , S ( 0 ) = 0 dS/dt = 5/2 − 26S/(200 − t),S(0) = 0 dS/dt=5/226S/(200t)S(0)=0 解的图像。
在这里插入图片描述图1.99 图1.98中绘制的溶液的盐浓度与时间的关系图。

这个过程描述了随着时间的推移,池塘中的盐含量先迅速增加,然后逐渐减少的情况。当垃圾逐渐填满池塘并使其体积减少时,盐的流入速率保持恒定,但由于池塘体积的减少,盐的浓度开始上升。然而,随着垃圾进一步填满池塘,水体减少到极限值,导致最终的盐量和浓度都下降至零。在 t = 200 t = 200 t=200 时,池塘完全被垃圾填满,不再含有水或盐。

线性方程解法的比较

有句老话说:“如果你唯一的工具是一把锤子,那么每个问题看起来都像一个钉子。”
如果你只知道一种解线性微分方程的方法,那么在遇到这样的方程时,你肯定会节省思考使用哪种方法的时间。然而,我们有两种方法,每种方法都有其优点和缺点。
选择哪种方法来解线性微分方程?对于给定的线性微分方程,应选择哪种方法?如果尝试猜测我们刚刚解出的非齐次方程的解,那将是一场噩梦。因此,对于该方程,使用积分因子法是唯一合理的选择。另一方面,考虑一个典型的线性方程,例如:
d v d t + 0.4 v = 3 cos ⁡ 2 t , \frac{dv}{dt} + 0.4v = 3 \cos 2t, dtdv+0.4v=3cos2t
这个方程通常用于描述RC电路中电容器上的电压,该电路具有周期性电压源(参见第1.4节)。该方程的积分因子为 μ ( t ) = e 0.4 t \mu(t) = e^{0.4t} μ(t)=e0.4t。因此,你必须计算的积分是:

∫ e 0.4 t ( 3 cos ⁡ 2 t ) d t 。 \int e^{0.4t}(3 \cos 2t) dt。 e0.4t(3cos2t)dt

这个积分可以通过分部积分法手动完成,但会花费一些精力。

如果你使用猜测法,你会猜测一个特解形式为:

v p ( t ) = α cos ⁡ 2 t + β sin ⁡ 2 t , v_p(t) = \alpha \cos 2t + \beta \sin 2t, vp(t)=αcos2t+βsin2t

然后求解 α \alpha α β \beta β。这个计算需要一些代数运算,但微积分部分相对较少(见练习21)。

那么,哪种方法更适合解这个方程呢?两种方法都会得出相同的通解,但猜测法可能更快。猜测法的一个优势在于,它利用了扩展线性原理,使我们能够更直接地看到解的定性行为。我们知道,齐次方程的通解是 k e − 0.4 t ke^{-0.4t} ke0.4t,其以指数方式趋向于零,从长远来看,所有解都收敛于周期性解 v p ( t ) v_p(t) vp(t)(见图1.100)。

理论上,积分因子法的适用范围更广,但涉及的积分可能难以或无法完成。前一节中描述的猜测法避免了积分,但仅对某些线性方程(如具有相对简单函数 b ( t ) b(t) b(t)的常系数方程)实用。

最重要的是,你需要理解什么是线性方程,以及线性原理和扩展线性原理的含义。同样重要的是,记住开发积分因子法背后的巧妙构思。每种方法都能教我们一些关于线性微分方程的知识。
在这里插入图片描述图1.100 方程 d v d t + 0.4 v = 3 c o s 2 t \frac{dv}{dt}+0.4v = 3 cos 2t dtdv+0.4v=3cos2t 的若干条解曲线图。注意,从长远来看,所有解决方案都收敛于 v p ( t ) = 15 / 52 cos ⁡ 2 t + 75 / 52 sin ⁡ 2 t v_p(t) = 15/52 \cos 2t + 75/52 \sin 2t vp(t)=15/52cos2t+75/52sin2t (见练习21)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值