推荐系统一个吹NB的方法

本文探讨了推荐系统的最新研究,特别是阿里集团在该领域的有趣论文,涉及Attention机制和时间关系在网络设计中的应用。此外,提到了多任务学习在Embedding负采样中的作用,以及通过VAE进行编码精炼的创新方法。推荐系统中使用RL的案例较少,主要应对优化难题,但面临计算力挑战。
摘要由CSDN通过智能技术生成

这几天大概一直在看推荐系统的东西,主要目的是为了写本子。有一个很幸运的事情是,有一名大佬已经把一些值得看的东西都拿了出来。这里就是RecSys必看论文

当然,RecSys还是很有意思的。虽然我必须得抱怨一句,RecSys的好多conference不让下载,这也是挺奇葩的。不过整体来说,这里面还是很少的有很多有趣的网络设计的地方,而且还有很多的想法。

我发现几个有意思的趋势。

首先,大部分RecSys的网络设计其实是很有意思的。在这里面,阿里的论文似乎是最有意思的。比如说吧,这个图:

这点也没什么奇怪的,毕竟Attention从某种意义上来说,是一种Match Learning的手段。而从单纯embedding走到Attention Encoder也是必然趋势。

其次, 时间关系往往是一个可以很有趣的设计。比如说这张图:

 当然在这里,现在看起来设计一个GRU之类的网络可能是有点多余了。但是,其实这类RNN是有很多有意思的内容的。 比如说大家可以看一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值