Ffjord虽然是很老的一篇文章,但是这个想法真的很惊艳。这里面最惊艳的大概就是把Normalizing Flow做成了连续形式,然后根据一个ODE的解法来进行。对于数学基础好的同学,这里面最重要的可以学习的是关于处理复杂度的处理,和Performer能学到的东西很类似。
BYOL是一个非常有意思的文章。在我印象中,例如基本依赖于负样本,类似于Triplet Mining。在相当的时间里面,我一直认为Constrast Learning的主要目的还是引入负样本。但是这篇文章告诉你,其实引入负样本反倒是不靠谱的。
Consistency Regularization for Variational Auto-Encoders和DIVA: Domain Invariant Variational Autoencoders是两个相对来说比较新,但是看起来很好用的
本文介绍了几篇令人惊叹的学术文章,包括将Normalizing Flow转化为连续形式的创新方法,利用ODE求解;BYOL展示了在无负样本的情况下进行对比学习的新思路;Consistency Regularization和DIVA提供了VAE应用的新视角;最后,Planning to Explore通过自我监督世界模型探索学习,强调计算 Surprise 在探索中的作用。
最低0.47元/天 解锁文章
3084

被折叠的 条评论
为什么被折叠?



