自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

数学AI钢琴健美和乒乓球

纯干货不bullshit的数学AI钢琴健美和乒乓球介绍

  • 博客(69)
  • 资源 (1)
  • 收藏
  • 关注

原创 Model-based Reinforcemet Learning

从目前来看,当初所说的各种酷炫的RL算法很有可能(至少在经典问题上),被model-based方法取代。目前一个很强的算法是dreamer,而且他可以很好的扩展,建议大量读他相关论文。在这方面,如果需要一个初级介绍的话这个博客非常好。...

2021-01-15 11:08:33 233 1

原创 虽说中国是礼仪之邦,但是这个礼看来还是没有几个人学透

今天搬新家。特意测试了一下钢琴。然后两个邻居听到了,他们的目的都是觉得声音太大要小点声。邻居一:您好,诶哟,您这琴弹的真好,我能进来坐坐么?您是做什么的?啊,一般学钢琴一边做数学,那您太厉害了,以后能教我小孩么?诶,那太谢谢了!就是吧,您这里吧,虽然弹的是特别好,但是吧,我老婆怀孕着呢,有时候呢,她得休息,尤其难受的时候。要不您看这样成不,我留您微信,要是我老婆啥时候需要休息给您发个消息,我们都互相照顾一下可以么?邻居二:草尼玛b,你不知道我老婆休息啊~你麻痹不弹你家里能死啊~(老婆往上冲)我孕妇我随时

2021-01-10 00:29:20 814 3

原创 关于所谓强人工智能

有人说数理逻辑+深度学习就等于强人工智能。但是说句实话,这些都是概念。我理解数理逻辑在其中的作用。如果感兴趣的,可以看这本书。但是说句实话,真正逻辑推导能做到很好是很难的一件事情,并不用说跟深度学习模型结合。但是也不是说没有做的,或者该领域就没有意义。这篇文章是我感觉做的最扎实的。可以看看他的后续工作。...

2021-01-08 15:46:41 196

原创 关于PyTorch XLA的问题以及为啥现在开源代码都要拼手速

PyTorch和TF在处理TPU训练上有一个明显的不同,那就是PyTorch缺少steps_per_execution这个参数。简单来说,TF可以一次喂给TPU一堆东西,而PyTorch XLA不可以。前两天,刚刚提了这个bug。得到回复知道怎么修了,结果人家官方有个人18个小时提出来了。Anyway,这段代码是核心:from __future__ import divisionfrom __future__ import print_functionfrom six import iterite

2021-01-07 22:58:14 1546 2

原创 Jax Entmax Alpha激活函数

这篇文章介绍了一个叫做EntMax-α\alphaα的激活函数。当α=1\alpha=1α=1时,该激活函数成为了softmax,而α=2\alpha=2α=2时,则为sparsemax。这个研究在NLP领域倒是没有掀起什么风浪,但是在表格化挖掘却因为TabNet火了。把这个作为例子,是一个很好的jax的使用练习。代码在这里。还在优化中。一些flax和jax的补充在并入到官方之前,可以在我的github找到。绝对不保证实践正确。Use with caution。不管怎么说,代码在这里。import

2021-01-07 22:25:12 1108

原创 Vector Meausre, Mackey Topology和Dunford-Pettis Property

一般来说,近十年出的数学论文多少都是很难读懂,而且很多时候不一定很有借鉴价值。这倒不是因为结果不好用,而是因为工具太复杂了。我最近看了一篇论文,这篇论文讲的题目如图。可以说,这是我见过的最好的一篇十年类的论文。他把几个很重要的东西放在了一起。Mackey topology。基本上Weak Topology等价于Mackey Topology的时候你的证明就完成了。Dunford-Pettis。达不到compact的时候(即使在很弱的拓扑),Dunford-Pettis基本就代替了compactnes

2021-01-06 13:00:38 261

原创 (转载)增强学习一个很好的汇总

废话不说,上链接。[下载地址]如下。(https://www.jair.org/index.php/jair/article/download/12412/26638)

2021-01-05 21:09:38 167 1

转载 (搬运)Triplet Loss Mining:介绍实现

Triplet Loss Mining从最广义的角度来说,就是说每次训练逐渐训练越来越困难的样本。多余的不说。这个介绍和这个代码可以尝试。其实这个idea可能不仅仅适用于triplet loss。很期待有人能进行实验。...

2021-01-04 17:09:00 348

原创 如何区分真大佬和伪大佬

中国大概99%的都是伪大佬吧,伪大佬自称神,自称巨佬,自称远古巨神等等,但是说句实话,大部分恐怕都没接触过大佬圈。要区分很简单:伪大佬很喜欢自我抬高,每天到处写博客发自己的东西,显示自己实力高强;真大佬最怕自我抬高,因为到处来一帮想白嫖的;伪大佬闲,闲的体现就是大量的时间做宣传自己的事情;真大佬你发他邮件未必有时间理你;伪大佬喜欢盗用别人成果,比如说明明是谷歌的,伪大佬会说我自研的啥啥啥;真大佬从来不敢盗用,在学术圈臭了就不用混了;伪大佬看不起别人,认为回答别人问题是耽误自己时间,不如给自己造神

2021-01-04 10:42:30 1692 1

原创 关于印度外包的情况:以及坐井观天的危险

我知道网上对于所谓阿三的外包问题一直是觉得特别简直是low到极点,知乎上还有大佬专门diss印度外包。但是另一方面,从外包市场来说,像中国的头部外包,姑且不说又贵又不好用,姑且不说英语不好所以不被美国用,我们再去掉所有政治因素。如果公平比较,我觉得大部分大厂的大牛可能打不过印度的高年级本科生。我来说说昨天发生了一件什么事情,我昨天联系外包的时候,突然被一个印度的学生(本科生三年级),说想接点外包的活。来自于Indian Institute of Science。一直跟我聊说老板给个机会,一直跟我聊说

2021-01-04 09:32:49 3229 4

原创 加缪的一个介绍和现在打工人的状态

目前接触了很多高端打工人,感觉大家生活在社会主义的极端幸福当中,已经工作起来没有时间休息了。稍微了解了一下大家的世界观。感觉大部分如果非要说接近什么的话,那就是减价促销版的叔本华+尼采吧~实际上,感觉如果还有一个选择可以了解一下:加缪。你喜不喜欢另说,最最近在油管上找到了一个不错的东西。搬运过来了。打工人还是建议看一下的。心急的,直接去这里吧:https://youtu.be/_js06RG0n3c...

2021-01-03 19:23:59 191

原创 关于泛函分析几何部分的推荐

Rudin的书是经典。但是Rudin的书有几个问题。证明很多不好。有的是写的太长。比如说Banach-Alaoglu,明明一个Ultra Filter直接两行搞定,写了一大堆。推广性不好。关于对偶和重对偶,Rudin的体系好像感觉这俩完全不是一回事。其实是一回事。习题过于简单。当时Leiden博士做的时候,大概30分钟一道课后题;我的话,比较慢,2小时差不多也做出来了。对于研究生来说,这个难以程度不好。目前对于几何部分,非常好的一本书,但是很少有人看的,是Schaefer。这本书比大部分很近的号

2021-01-02 08:44:15 610

原创 关于batch norm

BatchNorm大家都知道,但是最近实验发现,这玩意的影响比想象大得多。比如说有人发现TabNet的实验,如果BatchNorm实现错了,整个训练最后就会崩。这方面有两个资料。Four Things Everyone Should Know to Improve Batch Normalization相当好玩,实现起来不难。如果实现都不愿意实现,那么恭喜你这个repo帮你做好了。最后,实现normalization和dropout到底谁先谁后一直打得你死我活。Rethinking the Usage

2021-01-02 08:24:13 192

原创 关于Residual Connection

大家都知道ResNet(所以下次培训机构在8888搞定resnet时候就别去了),但是其实那个ResNet这个玩意有很多很有意思的东西。不说多了,第一篇论文ReZero里面讲了一些对ResNet的改进,注意里面有个综述部分。相当好玩。第二篇论文更有意思,Rethinking Skip Connection with Layer Normalization考虑了一个其实很重要的问题,就是LayerNorm的问题。Batch Normalization的算法其实水很深,并且有时候能起奇效。最关键,这俩玩意

2021-01-02 08:17:42 475

原创 找比赛相关论文的一些废话

之前说过,研究比赛相关论文的可能是很好的。但是不见得好找。这里面稍微说一下吧。Kaggle大型比赛相对来说还是靠谱的,有些小比赛稍微有点诡异。Kaggle一般直接搜索就行。大部分会有kernel。Kaggle相对缺点是,比如说我关于Object Tracking,但不是每年都会有比赛。国内的话,介绍这个的,我看得不多。这个是不错的。目前国内公众号主要目前注水太多,好多公众号开始时候还不错,但是后来就。。。你知道的。会议会议的话,其实关于自己喜欢的领域就好了。还是说Tracking。比如说VOT这种

2021-01-02 08:11:17 159

原创 初学者能不能学不是问题;问题是非学习者能不能学

这两天不是一直在搞开课吧诈骗的事情么?当时有两个人听了以后找了我,一个说你说的好,这老师连自动驾驶车的硬件包括啥都说错了,我早就想骂了,我现在就退课。另外一个说,你说的好,这人就是个骗子,但是我还是想听下去。这就比较奇怪了,这是一个学生,6800八节课听一个假老师讲课,之后还要几万的费用听后续,这是家里特有钱要洗钱么?或者是初学者听一点十一点?后来聊了两句,明白了。这人是我所谓的非学习者。啥叫非学习者呢?简单来说,没脑子。但这话太难听,我说了还得道歉。那咱们这么来分析一下。学习需要啥?脑子。脑子体现在哪

2021-01-01 23:12:12 160

原创 当傻子的最好办法: 把别人当傻子

虽然说难得糊涂吧,但是说句实话,要是我当面骂人傻子,估计会被砍全家。可是呢,把别人当傻子这事情可是很爽的。但是好歹老天还是有眼的,我今天要说的是,把自己变成傻子的最好方式就是把其他人当成傻子.我小时候有一次和小朋友演出钢琴,听的基本是家长。那时候谁家有个钢琴都是值得吹一年的,更不用说听过古典音乐。所以一小孩儿特紧张,于是我就安慰说,“没事儿,大家都听不懂”。结果,我被我的老师狠狠的骂了一句。当时她说的最后一句话就是,如果你抱着这个想法去,最后你就只能给猪弹琴。我刚开始没理解这句话有多重要,只是觉得老师

2021-01-01 22:49:53 404

原创 如何读AI论文

这两天吧,看到了很多奇事。先说说昨天开课吧某业界知名老师、中科院天才博士在讲主动驾驶算法选型时候的奇闻奇事吧。首先该老师表示自己所有论文只要三分钟就能读完,而且自动驾驶也没有几篇论文。所以应该先去arxiv找,然后如果选型,找个顶会就行了。估计不说以上多少错误啊,接下来一句话把我逗了了。我在评论里面说要注意顶会论文也不是都可以复现的,比如说nips里的论文都不一定能复现。老师回答是,你听不懂我话么?我说顶会,nips是什么东西啊?至于后来老师非要说服我中科院CV的博士都没听过nips的事情下个帖子再说。这

2021-01-01 22:27:21 518 1

转载 一个很好的paper with code回顾

这个绝对是干货。Paper with code回顾

2021-01-01 10:31:50 910

原创 关于某个复现XLNet的广告文案

在某心培训中,最常见的一个广告就是所谓复现XLNet的。原意是,在面试一个小时中,如果你不能手打XLNet,那么你连基本功都达不到。所以换句话说,倒贴钱都没公司要你。这个广告造成极坏的影响。姑且不说,后面推荐课程课程一点帮助都没有,其实就是简单的优化理论。我们先说一下XLNet复现为啥不可能。我们先看XLNet源码。先看这个文件。自己看看多长,我记得打印出来是四十页。四十页一个小时老师能打完我都不相信,更不用说复现。再说一个更关键,大部分顶会论文不会把所有细节都放出来,比如说这段代码flags.DE

2021-01-01 09:37:43 417 1

原创 2021年新年快乐:放心吧,2021年不会变好的

看到满屏幕的2020年新年快乐,突然有一种悲凉。说句实话,2020年打垮我们的,有病毒,但是更多是我们自己。我们庆祝病毒的时候,别忘了谁因为暴露消息被抓起来,别忘了哪些大厂惦记着老百姓的菜篮子而不是科技创新,别忘了谁拿着用户的钱去贷款然后导致房客房东反目成仇,别忘了哪个房地产欠了8000亿和4000亿还说不买房子就不爱国,别忘了多少培训机构把让学生贷款上几万的课,可是老师连nips是ai的顶刊都找不到。在这背后,都有一个逻辑,那就是别人傻,别人弱,我要占便宜。刚才去买鸡爪,看着一边一群人发着新年快乐

2021-01-01 00:47:08 477 1

原创 培训机构的底线:请问中科院的所有CV博士生都不知道NIPS么?

最近在开课吧上了一个自动驾驶课,老师号称中科院博士,又有创新又有论文,并且还在业界是大牛。各种错误就算了。我提到nips,告诉我nips不是顶会。我问助教解释,助教表示中科院做CV的都不知道nips,这非常正常。烦请各位传达给中科院的老师,是不是博士生连nips都没听说过是件正常的事情?我非常想确认一下。...

2020-12-31 22:45:11 350

原创 关于AI理论的问题

经常有人问我AI理论有啥。其实很难有一套系统的理论,不是说AI理论没用,而是目前大家还在探索阶段。好多人说看不懂老顾的文章,其实这方面还有难得多的paper,最典型就是Le Cam理论,比如说看这个。实际上,这里面要求大量所谓抽象数学。我刚开始只是想做一个讲座把这个课讲明白,后来想想看,干脆出一套免费的AI理论数学班吧。包括两套东西抽象部分具体部分抽象部分比较多,主要是讲几何、代数和高级的随机分析。比如说会讲一般的对偶理论(不是Rudin那么简单的),Banach Lattice,黎曼几何,算子

2020-12-31 10:04:07 276

原创 关于张量求导的事情

一般来说,矩阵求导到两个向量还能做,否则的话就没法定义了。这导致深度学习推导后向传递公示的时候,都先拉直然后在说。比如说这个CNN的推导。这里还比较幸运,还是能折腾出来的,等到RNN就不好办了。其实借用于微分几何的方法,可以定义一套很简单的办法。这套办法在这里肯定写不清楚,所以我上传到我的资料去了。最后说一下,为什么要学这个。面试在大部分实现中,AutoGrad都不太好,所以自己能写出来能大大加速。...

2020-12-31 09:56:54 289

原创 Colab如何从github上安装库

如果你觉得只是!pip install git+...那就中计了。虽然显示着安装成功,但是加入之前他已经安装了这个软件,那么你必须把这个卸载掉再安装。比如说,如果我运行!pip install git+https://github.com/rwbfd/jax.git@master虽然显示安装成功,但是实际上还是会用原来的jax(因为jax已经在其中装好了)。所以办法很简单!pip uninstall jax -y!pip install git+https://github.com/rwbfd/

2020-12-31 00:31:22 1156 1

原创 Object Tracking今年VOT2020 Chanllenge的结果

之前总是有人问我关注哪些公众号,其实很不幸的是,国内大部分公众号都是很旧的算法。当然有些人说,这是因为不好落地,然后给一大堆高大上的理由。这话非常侮辱人,无非就是说,看我公众号的都是些只会git clone的,新算法都看不懂的小白。可是说句实话,好多看公众号的,不见得比公众号的差,甚至比公众号高一个档次。那么这里正好最近研究到Object Tracking。这个任务相当复杂,可以看这个综述。但是好多paper都是吹牛很大,所以怎么办呢?找比赛。优先找Kaggle,因为毕竟Kaggle很多dirty tri

2020-12-30 16:25:10 669

原创 为什么讨厌所谓仿生AI的说法

大概关于AI最常用的说法就是AI来自于人脑科学推进了AI的发展,所以AI比传统统计学要好。这是我最讨厌的说法,而且也是最容易导致误解的。原因很简单,我们其实对人脑还不太了解。要了解人脑真实的过程,需要很侵入式的实验(还不一定能搞清楚其中机制),感兴趣的,自己去看怎么给猩猩做实验的。我们研究Neural Economics的时候,大部分也就能看个fMRA。换句话说,我们都不知道人脑具体决策,咋人工智能主要推动就是人脑了呢?另外一个更关键的,其实是motivation和效果的问题。讲个故事,当年Kolm

2020-12-29 20:20:33 284 1

原创 为什么自动驾驶不能随便写个人工规则就好

前一段时间,几位国内头部厂商号称自动驾驶专家的人物,表示自动驾驶其实很好解决,只要把物体在哪儿搞清楚,无非就是加速和方向盘而已。我就不说这些企业是什么了,总之要命的别做这种车。为什么:原因很简单,因为对应的前置任务是有限度的,并且难以提高。以Object Tracking为例,在简单的地铁中,旷世通过各种骚操作做到了80%。看起来还可以,但别忘了,公路上的物体比这个复杂的多,所以我要拍脑袋,那正常达到60%就不错了。打个不恰当的比方,我从a地走到b地,如果我眼神没问题,大部分都可以走,但如果我眼神有问题

2020-12-29 01:07:31 2394 5

原创 如何用PyTorch Lightning跑HuggingFace Transformer(TPU)

TPU本身非常擅长处理transformer类的结构,而且可以白嫖(Colab)。HuggingFace Transformer本身是Transformer结构中最重要的库。但是他们使用的是自己的trainer,API经常改变。导致如果你要加一些自己的训练trick就比较困难。所以目标是用PyTorch Lightning跑Hugging Face的Transformer。并且要求是在TPU上。代码在这里。别忘了把runtime改成TPU。注意目前来说,TPU训练还是完全没有达到很好的效果的。相比.

2020-12-29 00:58:15 1097 2

Tensor求导法则

目前来说,我在市面上还没找到对于高维Tensor求导法则的详细介绍。比如说推导CNN的时候,必须用kronecker product来回折腾。对于RNN,则干脆就求不出来。这里介绍一个通用的资源

2020-12-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除