机器学习之树形模型:决策树 决策树常见的树形模型(随机森林、GBDT、XGBoost),树形的基础是“决策树”。“决策树”特点:易理解、易构建、速度快分类分类决策树输出的结果为具体类别,用于处理离散型变量回归决策树输出的结果为确定数值,用于处理连续型变量决策树构建的算法分类树:ID3(信息增益)、C4.5(信息增益比)分类回归树:CART (基尼指数)其中ID3是最基本的构建算法。步骤:特征选择、决策树的生成、剪枝决策树+集成学习=新算法1)Bagging + 决策树 = 随机森林(Rand
机器学习之逻辑回归模型 文章目录分类思想模型介绍(公式)公式推导sigmoid函数代码实现补充:多分类逻辑回归模型分类思想逻辑回归是一个分类算法。分类的思想:将每个样本进行“打分”,然后设置一个阈值(概率),大于该阈值为一个类别,反之另一类别。模型介绍(公式)z=ω1x1+ω1x2+...+ωnxn+b=∑i=1nωixi+bz = \omega_1x_1+\omega_1x_2+...+\omega_nx_n+b=\textstyle\sum_{i=1}^n\omega_ix_i+bz=ω1x1+ω1x2+
Python知识点大纲 这里写自定义目录标题Pandas基础数据类型高阶用法missing dataduplicate dataNumpyPandas基础数据类型df.dtypes 查看字段数据类型df[‘a’].astype(‘float’) 数据类型转化高阶用法missing datadf.dropna()@axis: {0 or ‘index’, 1 or ‘columns’}, default 0@how: {‘any’, ‘all’}, default ‘any’@thresh: int,
Python 使用前的指南及环境管理 1. Anaconda安装2.环境管理查看python版本python --version虚拟环境创建:conda create --name py36 python=3.6 py36表示虚拟环境名字激活:conda activate py36
机器学习相关概念与模型 交叉验证(Cross Validation-CV)目的:防止模型在训练集上过拟合,导致在测试上表现不好,使用验证集筛选出最优参数。交叉验证仍需要测试集做最后的模型评估,但不再需要验证集。最基本的方法被称之为,k-折交叉验证 。 k-折交叉验证将训练集划分为 k 个较小的集合(其他方法会在下面描述,主要原则基本相同)。 每一个 k 折都会遵循下面的过程:将 k-1 份训练集子集作为 training data (训练集)训练模型,将剩余的 1 份训练集子集用于模型验证(也就是把它当做一个测试集来
Terminal命令笔记 展示路径: pwd列出当前文件夹中的所有内容lsmkdir file_demo 创建目录==》rmdir file_demo删除目录生成文件:touch file_name.txt修改文件内容vi file_name.txt 打开文件I 编辑,esc + :wq 保存退出
阅读笔记0002之职场文化 社会表面现象:工作者——企业想压榨自己,没有想过好好培养自己企业——招现成、能立创造价值的人员企业文化——传承,学习企业文化&Mentor的言传身教==》当自己也成为mentor的时候,会受到使命感、价值观的影响,对待下属当今社会的高节奏,让建设企业文化成为一种奢饰品#mermaid-svg-WqFoX5fOw1RRhw04 .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-
VS Code 使用教程 初始化设置中文设置:打设置菜单(Ctrl+Shift+P) ==> Configure Display Language ==> Instal >Chinese(Simplified)> 安装完成提示restart界面认识:资源管理器,搜索,Git,调试,插件常用快捷键⌘ command键⌥ option/alt⇧ shift按键^ control键搜索:Command + Shift + F调取/关闭terminal:Control + ~替换:Op
presto castcast(a.xxx as bigint) as yyy日期函数date_trunc('week',CURRENT_DATE - INTERVAL '1' DAY) -- week第一天日期date_diff('day', 某天日期, CURRENT_DATE) -- 时间间隔date_add('week',-1,CURRENT_DATE - INTERVAL '1' D...
Google Sheet 学习笔记 Google Sheet 公式:sheet!$A:$B,'sheet new'!$A3:$D=countifs('Account Detail'!$F:$F,"=M-0")=sumifs('Account Detail'!$G:$G,'Account Detail'!$F:$F,"=M-0") F列判断,对G列求和=sumifs('Account Detail'!$H:$H,'Account Detail'!$D:$D,"="&$A3,'Account Detail'!$F:$F,"=M-
阅读笔记0001之聊聊数据分析现状 文章目录数据分析是干什么的?数据分析最重要的能力?数据分析的岗位前景人间清醒文-聊聊数据分析现状的阅读笔记数据分析是干什么的?数分工作:对数据进行分析(wrong)==>用数据进行分析(right)。区别点:数据是分析的手段,而不是分析的对象。若不明白上面这点,不先考虑问题,却把数据放在前面,有的止步于简单的描述;有的则一头扎入维度和度量交叉组合的无尽汪洋中,不知从何做起。(自己尚停留在这个阶段,却无法出来)用数据进行分析,分为四类:描述性分析,是要将业务状态以一个量化的方式完整地呈现出
python基础1 文章目录1 注释2.变量3 关键字4 输入与输出5 if 语句6 运算符算数运算符:5/41 注释多行注释"""..."""和'''...'''单行注释#... 快捷键:CTRL+/(Win) or Command+/(Mac)2.变量'知名会意‘的变量名=数据变量的命名:规则:字母、数字(不开头)、下划线命名方式:大驼峰:MyName小驼峰:myName下划线...
Python爬虫基础 文章目录1.导入相关的模块2.发送网络请求获取数据2.1确定爬取网站(url)2.2 防止反爬(构建请求头)2.3发送请求response响应体 (想要的数据,响应头)=>拆分响应对象=>拿到数据(二进制->解码)字符串类型3.分析网页架构(找到需要的数据)(解析数据)3.1 转换成可以解析的类型3.2 需求获取li(p/img(src))\xpath语法获取img标签: /h......
CSDN生成目录 第一个标题aljf ;laj’asfj ;lkjsaa;flskj lasjajdflkjagng;aj’jfqpujkljlfkjjhabcdefghijklmnopqrstuvwxyzabcdefghijkllmnopqrstuvwxyzzheshi二级标题第二个标题
python基础4 面向对象和面向过程的异同同:都是一种开发模式(思维模式)异:通过做一道菜进行阐述面向过程:摘菜=》洗菜=》切菜=》炒菜=》出菜面向对象:*找一个厨师(对象)=>【摘菜=》洗菜=》切菜=》炒菜=》出菜】程序员而言:只负责调度对象,对象做那些事面向过程:你=》功能方法(做事情)面向对象:你=》功能对象.功能方法类和对象的概念:类(抽象): 事和物的一个分类...
jupyter notebook 1.修改默认路径打开Anaconda Prompt窗口输入jupyter notebook --generate-config生成配置文件(在用户\用户名.jupyter文件下)打开jupyter_notebook_config.py文件,搜索c.NotebookApp.notebook_dir然后c.NotebookApp.notebook_dir='添加自己配置的路径'2.修改浏览器为...
Jupyrer notebook 插件 windows键 -> 输入prompt—>进入Anaconda Prompt界面输入pip install jupyter_contrib_nbextensions来安装Anaconda的插件包成功跑完,在输入jupyter contrib nbextension install --user完成后输入jupyter notebook进入Jupyter notebook 网页...