【Mark Schmidt课件】机器学习与数据挖掘——稀疏矩阵分解

本课件主要内容包括:

  1. 上次课程回顾:基于正交/序贯基的PCA

  2. 人眼的颜色对立

  3. 颜色对立表示法

  4. 应用:人脸检测

  5. 特征脸

  6. VQ vs. PCA vs. NMF

  7. 面部表示

  8. 非负最小二乘法

  9. 稀疏性与非负最小二乘法

  10. 稀疏性与非负性

  11. NMF投影梯度

  12. 应用:体育分析

  13. 应用:癌症特征

  14. 正则化矩阵分解

  15. 稀疏矩阵分解

  16. L1正则化矩阵分解

  17. 结构稀疏性

  18. 图像块的隐因子模型

  19. 应用:图像复原

在这里插入图片描述

在这里插入图片描述

英文原文课件下载地址:

http://page5.dfpan.com/fs/0lc9j2021e29516d157/

更多精彩文章请关注微信号:在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值