机械系的AI小白
码龄6年
关注
提问 私信
  • 博客:17,054
    17,054
    总访问量
  • 12
    原创
  • 72,998
    排名
  • 198
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:国内头部某互联网公司,世界500强企业高级图像算法工程师。专注CV领域算法,包括high-level任务,分割检测;low-level任务,图像超分,图像修复,hdr增强等,最新AIGC技术;以及端侧算法落地,模型压缩、高效模型设计、蒸馏、量化等。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-07-31
博客简介:

weixin_42841721的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    135
    当月
    1
个人成就
  • 获得286次点赞
  • 内容获得7次评论
  • 获得285次收藏
创作历程
  • 12篇
    2024年
成就勋章
TA的专栏
  • 目标检测系列
    1篇
  • vision transformer系列
    3篇
  • 量化感知训练
    2篇
  • 模型量化
    4篇
  • diffusion
    4篇
兴趣领域 设置
  • 人工智能
    计算机视觉人工智能深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLO系列之一: YOLO-V1

yolo-v1介绍
原创
发布博客 2024.09.04 ·
972 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏

MobileViT原理与代码总结

MobileViT原理和代码介绍
原创
发布博客 2024.09.04 ·
943 阅读 ·
27 点赞 ·
0 评论 ·
17 收藏

VIT(Vision Transformer)系列论文汇总

虽然transformer有比较强的全局特征提取能力,但是没有偏置(局部特征提取能力受限),计算量大,耗时(和分辨率的平方成正比的计算复杂度)等。笔者认为,想学好transformer在CV领域的应用,并且最终能够用到自己的工作或项目当中,甚至提出新的网络结构,应该要全面地先对transformer的优缺点有充足的了解以及理解;并且全面了解其发展,以及每个时期的不同transformer为基础的网络结构的变化,改进方法,相互之间的联系。通过大量阅读相关的论文,以及代码,来建立起一个相对完整的知识体系。
原创
发布博客 2024.09.02 ·
912 阅读 ·
24 点赞 ·
0 评论 ·
15 收藏

原始VIT(Vision Transformer)总结(原理与代码)

论文地址:2010.11929 (arxiv.org) 参考代码地址:GitHub - google-research/vision_transformer Transformer最开始是NLP领域提出的一篇文章,transformer因为其长依赖捕捉,出色的全局特征提取,以及关键特征相关性表征的能力,在NLP领域(比如机器翻译等)取得了巨大的成功。而Transformer中最突出的一个结构就是多头自注意力(multi-head self-attention), 通过这种toke
原创
发布博客 2024.09.01 ·
1029 阅读 ·
30 点赞 ·
0 评论 ·
11 收藏

模型量化入门介绍——从谷歌白皮书学模型量化(2)

白皮书中在介绍完量化方式后,做了一些训练实验,然后得出了一些结论,以及一些测速相关的。篇幅有限,这里就不多说,只想给大家交代重点内容,其他的大家可以自行阅读。最后来到量化建议和总结。1. 模型结构设计上,不要限制激活值的范围。(比如relu比relu6好)2. 权衡好量化位宽。参数多的模型,量化鲁棒性一般会相对好一些,可以考虑更低的量化位宽,然而需要权衡,比如用30层的卷积,使用4bit的量化位宽,和10层的卷积,采用8bit的量化位宽,这个需要权衡。
原创
发布博客 2024.08.05 ·
1153 阅读 ·
13 点赞 ·
0 评论 ·
20 收藏

模型量化入门介绍——从谷歌白皮书学模型量化(1)

谷歌的量化白皮书()绝对是模型量化入门学习的必读资料,回顾自己在量化工作中踩的一些坑,十分后悔没有提前阅读这个资料,否则对于一个刚做模型量化的小白来说,很多不必要的坑可以规避,而且更能对量化这件事有一个整体的理解。下面一起大致回顾一下这个小编认为的入门必读的文章。(文章只是对一些小编认为比较重要的部分进行介绍,更希望读者能自行再读一下原文)
原创
发布博客 2024.07.31 ·
1123 阅读 ·
22 点赞 ·
0 评论 ·
23 收藏

DDPM代码详解(一)

比如一个batch有四个样本,每个样本的步长在[1, 1000]中随机生成,比如可以是[50, 100, 94, 786]。5. 接下来要实现逆向生成过程:逆向生成过程也是按照前面原理部分的公式得到的,只是把数学公式用代码表达而已。由于默认总步数是1000步,但是为了适配不同的定义,可以自己指定总步数,因此这里就会对每一步的步长进行缩放。至此,原始DDPM的代码已经实现了,还差一个生成噪声的network的定义,之后将在下一次代码详解中介绍。首先我们从整体来思考一下,DDPM的代码实现,会包含哪些部分。
原创
发布博客 2024.03.23 ·
2300 阅读 ·
46 点赞 ·
1 评论 ·
43 收藏

Diffusion简介

简单介绍图像生成diffusion
原创
发布博客 2024.03.23 ·
1694 阅读 ·
36 点赞 ·
0 评论 ·
36 收藏

Diffusion原理详解(二:逆向过程原理)

当然如果对公式推理感兴趣的同学,可以阅读一下原文,公式推导的过程其实也是一个很好的思维锻炼的过程。以𝜽为模型参数,反向生成的原始图像的分布,与真实原始图像的分布的,距离, 不大于 (≤), 各个阶段(𝑡 = 0,𝑡 = 1, 𝑇 − 1 ,𝑡 = 𝑇)以𝜽为模型参数, 反向生成的图像分布与该阶段真实图像分布的 距离 【KL-Divergence】和。公式(11)中红色的部分,这个式子里面出现的都是前向过程的参数,而根据文章最开始列出的前向过程推导公式,这个式子的分布我们是可以表达出来的。
原创
发布博客 2024.03.17 ·
2861 阅读 ·
30 点赞 ·
0 评论 ·
44 收藏

Diffusion原理详解(一:前向过程原理)

在之前diffusion简介中,简单的描述了diffusion的基础原理,我们知道了diffusion有两个过程,这里将详细介绍一下这两个过程以及数学原理。在这个加噪的过程中,我们假设当前的图像只依赖前一个时刻的图像和新加的噪声(假设加噪的过程符合马尔科夫过程)。至此,通过完整的公式推导, 介绍了diffusion的前向过程的原理,之后将继续介绍diffusion的逆向过程原理。前向过程是一个逐步加噪的过程,每一步加入的都是随机的高斯噪声,这里我们把 t 时刻的图像记为。根据公式(8)可以一直推到用。
原创
发布博客 2024.03.16 ·
649 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

量化感知训练 —— LSQ(二:代码解析)

至此,我们实现了伪量化算子,伪量化算子中利用伪量化方法进行参数伪量化,之后又定义了伪量化的类来实现伪量化方法。之后需要做的是,就是把原模型中的各个算子,替换成这里定义好的对应的伪量化算子,这样我们就可以实现一个插入LSQ伪量化节点的模型了,然后利用这个模型进行正常的训练,就可以进行LSQ量化感知训练了。在这个伪量化算子中,其中还有伪量化方法需要作为输入传入进行初始化的,而具体的伪量化,以及需要学习的量化参数的更新方法,则通过伪量化方法实现。对于其他的算子,比如nn.Linear,则使用类似的定义实现。
原创
发布博客 2024.03.10 ·
1122 阅读 ·
7 点赞 ·
6 评论 ·
10 收藏

量化感知训练——LSQ(一:原理)

模型量化知识总结
原创
发布博客 2024.03.03 ·
2258 阅读 ·
26 点赞 ·
0 评论 ·
33 收藏