测试方法——正交表法

一、应用场合

         正交表法,是一种利用正交表的方式,当测试过程中存在较为复杂的情况,以较少的测试次数达到较好的测试效果的一种方法,这种测试方法是从大量的测试情况中找出具有代表性的测试情形,利用正交表,结合等价类划分、边界值等方法来编写测试用例。正交表一般不需要记,能够根据确定的因素数和水平数 ,通过查找正交表,选择合适的正交表使用即可。

二、概念分析

正交表: 一种特制的表,一般正交表记为:

n  代表行数,每一行都是一条组合的测试用例

k 代表控件个数(因素)

 m  代表每个控件中的可选值(水平)

整个表达式的意思是: k因素,m水平, 总共有n个测试用例

 

三、步骤拆分

(1)根据软件需求规格说明书,分析控件个数和每个控件的取值个数,找出因子数和水平数

(2)根据分析出来的因子数和水平数,选择一个合适的正交表

(3)将每个控件及其取值进行编号,并填入到正交表中

(4)添加一些存在风险的可能性情形,结合等价类划分、边界值等测试方法编写测试用例

四、需求分析

以这个方框为例:(此为最简单的测试控件,这里不用枚举法

 

说明:

1、名称是输入框,用户自定义输入;

2、样式类型包括:段落、字符;

3、样式基于包括:正文、标题;

4、后续段落样式包括:样式1、样式2;

五、测试步骤

1. 根据实际的情况,找出控件个数(因素数)以及每个控件的取值个数(水平数),如下图所示:

编号

样式类型

样式基于

后续段落样式

0

段落

正文

样式1

1

字符

标题

样式2

2、根据正交表查询链接(http://support.sas.com/techsup/technote/ts723_Designs.txt(来源于网络)),选择一个水平为:2,因素为:3 的正交排列表,如下所示:

2^3 n=4

编号

1

2

3

1

0

0

0

2

0

1

1

3

1

0

1

4

1

1

0

 

3. 将每个控件及其取值进行编号,并填入到正交表中,如下图所示:

编号

样式类型

样式基于

后续段落样式

1

段落

正文

样式1

2

段落

标题

样式2

3

字符

正文

样式2

4

字符

标题

样式1

说明: 把每列中的0,1(两个取值)分别换成这个控件的2个取值(水平数),排列顺序要按照表中给出的顺序,每列的123都代表不一样的因子, 根据正交表按列进行替换 

 

4. 根据整理好的正交表,编写测试用例

用例编号

测试步骤

预期结果

测试结果

wdfk_001

1、在样式类型选择框中选择:段落

2、在样式基于选择框中选择:正文

3、在后续段落样式中选择框中选择:样式1

每个控件均可正常选择,点击确定按钮后,可以正常生效

 

wdfk_002

1、在样式类型选择框中选择:段落

2、在样式基于选择框中选择:标题

3、在后续段落样式中选择框中选择:样式2

每个控件均可正常选择,点击确定按钮后,可以正常生效

 

wdfk_003

1、在样式类型选择框中选择:字符

2、在样式基于选择框中选择:正文

3、在后续段落样式中选择框中选择:样式2

每个控件均可正常选择,点击确定按钮后,可以正常生效

 

wdfk_004

1、在样式类型选择框中选择:字符

2、在样式基于选择框中选择:标题

3、在后续段落样式中选择框中选择:样式1

每个控件均可正常选择,点击确定按钮后,可以正常生效

 

说明:可适当加入一些可能存在风险的测试用例,合成到该测试用例中

 


总结:

1、总的来说,正交表法是一种利用最小的测试过程集合获得最大的测试覆盖率的一种测试方法,此方法不是单一的测试方法,可结合其他测试方法共同使用。

2、当因素和水平数量少的话,可以采用枚举法列出所有的结果,以保证测试的全覆盖。只有当因素和水平很大时,由于不可能为每个输入组合都枚举出来,则可以采用这种方法。


 

 

 

 

 

 

欢迎关注「技术分享交流」公众号 ,在公众号里会不定期更新干货内容,欢迎您的加入!

 

发布了9 篇原创文章 · 获赞 6 · 访问量 6248
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览