不确定推理方法
主观Bayes方法
证据理论
证据理论可处理由不知道所引起的不确定性,它采用信任函数而不是概率作为度量,通过对一些时间的概率加以约束一建立信任函数而不必说明精确的难以获得的概论,当约束限制为严格的概率时,它就进而成为概率论。
基本概念
设U表示X所有你可能取值的一个论域集合,且所有U内的元素间时互不相容的,则称U为的识别框架。
定义:设U为一识别框架,则函数: 2 U → [ 0 , 1 ] 2^U \rightarrow [0,1] 2U→[0,1]在满足以下条件:
- m ( ϕ ) = 0 m(\phi)=0 m(ϕ)=0
- ∑ A ⊂ U m ( A ) = 1 \sum_{A\subset U} m(A) = 1 ∑A⊂Um(A)=1
m ( A ) m(A) m(A)表示对命题A的精确信任程度,表示了对A的直接支持。
定义:设U为一一识别框架,
2
U
→
[
0
,
1
]
2^U \rightarrow [0,1]
2U→[0,1]是U上的基本概率函数赋值,定义函数
B
E
L
:
2
U
→
[
0
,
1
]
BEL:2^U \rightarrow [0,1]
BEL:2U→[0,1]
B E L ( A ) = ∑ B ⊂ A m ( B ) BEL(A) = \sum_{B \subset A} m(B) BEL(A)=B⊂A∑m(B)
称该函数是U上的信任函数
B
E
L
(
A
)
=
∑
B
⊂
A
m
(
B
)
BEL(A) = \sum_{B \subset A} m(B)
BEL(A)=∑B⊂Am(B)表示A的所有子集的可能性度量之和,即表示对A的总信任,从而可知:
B
E
L
(
ϕ
)
=
0
,
B
E
L
(
U
)
=
1
BEL(\phi) = 0,\quad BEL(U)=1
BEL(ϕ)=0,BEL(U)=1
定义4:若识别框架U的一子集为A,具有
m
(
A
)
>
0
m(A)>0
m(A)>0,则称A为信任函数BEL的焦元,所有焦元的并称为核。
定义5:设U是一识别框架:定义PL:
2
U
→
[
0
,
1
]
2^U \rightarrow [0,1]
2U→[0,1]为
P
L
(
A
)
=
1
−
B
E
L
(
A
⃗
)
=
∑
B
∩
A
≠
ϕ
m
(
B
)
PL(A)= 1-BEL(\vec{A}) = \sum_{B \cap A \neq \phi } m(B)
PL(A)=1−BEL(A)=B∩A=ϕ∑m(B)
PL称为似真度函数
PL(A)表示不否定A的信任度,是所有与A相交的集合基本概率赋值之和,且有 B E L ( A ) ≤ P L ( A ) BEL(A) \leq PL(A) BEL(A)≤PL(A),并以 P L ( A ) − B E L ( A ) PL(A) - BEL(A) PL(A)−BEL(A)表示对A不知道的信息。规定的信任区间 ( B E L ( A ) , P L ( A ) ) (BEL(A) ,PL(A)) (BEL(A),PL(A))描述A的不确定性。
定义6:[BEV(A),PL(A)]称为焦元A的信任度区间。
P L ( A ) − B E L ( A ) PL(A) - BEL(A) PL(A)−BEL(A)描述了A的不确定性,称为焦元A的不确定度。 P L ( A ) PL(A) PL(A)对应于Dempster定义的上概率度量,BEL(A)对应于下概率度量
在证据理论中,下列几个信任区间值有特别的含义:
- (1,1)表示A为真(因 B E L ( A ) = 1 , B E L ( A ⃗ ) = 0 BEL(A)=1,BEL(\vec{A})=0 BEL(A)=1,BEL(A)=0)
- (0,0)表示A为伪(因 B E L ( A ) = 0 , B E L ( A ⃗ ) = 1 BEL(A)=0,BEL(\vec{A})=1 BEL(A)=0,BEL(A)=1)
- (0,1)表示对A一无所知(因 B E L ( A ) = 0 , B E L ( A ⃗ ) = 0 BEL(A)=0,BEL(\vec{A})=0 BEL(A)=0,BEL(A)=0)
由以上可知,BEL和PL满足下列关系:
P
L
(
A
)
≥
B
E
L
(
A
)
P
L
(
ϕ
)
=
B
E
L
(
ϕ
)
=
0
B
E
L
(
U
)
=
P
L
(
U
)
=
1
P
L
(
A
)
=
1
−
B
E
V
(
A
⃗
)
B
E
L
(
A
)
=
1
−
P
L
(
A
⃗
)
B
E
L
(
A
)
+
B
E
L
(
A
⃗
)
≤
1
P
L
(
A
)
+
P
L
(
A
⃗
)
≥
1
P
L
(
A
)
≥
P
r
(
A
)
≥
B
E
L
(
A
)
PL(A) \geq BEL(A) \\ PL(\phi) = BEL(\phi) = 0\\ BEL(U) = PL(U) = 1 \\ PL(A) = 1- BEV(\vec{A}) \\ BEL(A) = 1- PL(\vec{A}) \\ BEL(A) + BEL(\vec{A}) \leq 1 \\ PL(A) + PL(\vec{A}) \geq 1 \\ PL(A) \geq P_r(A) \geq BEL(A)
PL(A)≥BEL(A)PL(ϕ)=BEL(ϕ)=0BEL(U)=PL(U)=1PL(A)=1−BEV(A)BEL(A)=1−PL(A)BEL(A)+BEL(A)≤1PL(A)+PL(A)≥1PL(A)≥Pr(A)≥BEL(A)
已知基本概率赋值,可以得到信任函数和似真度函数,而当已知信任函数时,反过来也可以求得基本概率赋值,定理1给出这个变换关系。
定理1:设U为识别框架,m为基本概率分配,BEL为信任函数,则有
m
(
A
)
=
∑
R
⊂
A
(
−
1
)
∣
A
−
B
B
E
L
(
B
)
∀
A
⊂
U
m(A) = \sum _{R \subset A}(-1)^{|A-B}BEL(B) \quad {\forall} A \subset U
m(A)=R⊂A∑(−1)∣A−BBEL(B)∀A⊂U
证据理论的组合规则
证据理论中的组合规则提供了组合两个证据的规则。设 m 1 m_1 m1和 m 2 m_2 m2是 2 U 2^U 2U上的两个相互独立的基本概率函数,现在的问题是如何组合后的基本概率赋值: m → m 1 ⨁ m 2 m\rightarrow m_1 \bigoplus m_2 m→m1⨁m2
定义7:设 B E L 1 BEL_1 BEL1和 B E L 2 BEL_2 BEL2是同一识别框架U上的两个信任函数, m 1 m_1 m1和 m 2 m_2 m2分别是其对应的基本概率赋值,焦元分别为 A 1 , . . . , A k A_1,...,A_k A1,...,Ak和 B 1 , . . . , B k B_1,...,B_k B1,...,Bk,设:
K
=
∑
A
i
∩
B
j
=
ϕ
m
1
(
A
i
)
m
2
(
B
j
)
<
1
K = \sum _{A_i \cap B_j = \phi} m_1(A_i)m_2(B_j) <1
K=Ai∩Bj=ϕ∑m1(Ai)m2(Bj)<1
则:
m
(
C
)
=
{
∑
A
i
∩
B
j
=
C
m
1
(
A
i
)
m
2
(
B
j
)
1
−
K
∀
C
⊂
U
C
≠
ϕ
0
C
=
ϕ
m(C) = \left\{\begin{matrix} \frac{\sum_{A_i \cap B_j =C} m_1(A_i)m_2(B_j)}{1-K} & {\forall} C \subset U \quad C \neq \phi\\ 0 & C = \phi \end{matrix}\right.
m(C)={1−K∑Ai∩Bj=Cm1(Ai)m2(Bj)0∀C⊂UC=ϕC=ϕ
在式中,若
K
≠
1
K\neq1
K=1,则m确定一个基本概率赋值,若
K
=
1
K=1
K=1,则认为
m
1
、
m
2
m_1、m_2
m1、m2矛盾,不能对基本概率赋值进行组合。由定义7给出的证据组合规则则称为Dempster组合规则。对于多个证据的组合,可采用定义7的Dempster组合规则对证据进行两两综合。
设
A
,
B
⊆
U
A,B \subseteq U
A,B⊆U,A,B的证据间隔分别为:
E
I
1
(
A
)
=
[
B
E
L
1
(
A
)
,
P
L
1
(
A
)
]
EI_1 (A) = [BEL_1(A),PL_1(A)]
EI1(A)=[BEL1(A),PL1(A)]
和
E
I
2
(
A
)
=
[
B
E
L
2
(
A
)
,
P
L
2
(
A
)
]
EI_2 (A) = [BEL_2(A),PL_2(A)]
EI2(A)=[BEL2(A),PL2(A)]
则组合后的证据间隔为
其中:

8898

被折叠的 条评论
为什么被折叠?



