Anaconda深度学习 (太方便了趴)卸载tensorflow(cpu版本)导入tensorflow-gpu (gpu版本) ----太方便了趴

前期在是在用tensorflow 这个默认是cpu版本也很好装,但是考虑到我们科研项目后期是要用到深度学习,所以直接把tensorflow包卸载掉了改用tensorflow-gpu(毕竟大工程用gpu跑数据不是一般的快),这个用 Anaconda工具(管理python包工具) 进行卸载包可以说是非常方便了,直接点击要卸载的包前面的方框选择 mark of removal 进行卸载,然后tensorflow(cpu版本)就轻而易举卸掉了,然后就可以装gpu版本的tensorflow

大前提:你的电脑是支持GPU的,你需要查看你的电脑的显卡信息,然后看看这个网页里面包不包含你的GPU

查看这个网站—>NVIDIA CUDA

首先我们要要建一个虚拟运行环境(下面+create environment),好管理相关包

我这里是已经建了一个tensorflow环境了,搜索出来tensorflow-gpu里面有1.8和1.9版本,我用的是1.8版本已经install了,所以这里not install也就只有1.9了

搜索包

在这里插入图片描述

选择1.8版本

在你选择tensorflow-gpu-base包的时候下载时,anaconda会默认帮你选择下载cudatoolkit9.0 cudnn7.3.1(英伟达深度学习加速包);还有注意,如果你的包半天都下载不出来,还报一些错误,这是说明因为一些包在国外的服务器上导致网络会非常卡不稳定,需要去更改源 ,去使用清华镜像网站 或者 中科大镜像网站 下载速度会提升很快,这个百度上很多教程教你具体更改操作,可以自己去尝试
在这里插入图片描述

打开终端并且运行anaconda里面默认的python Open with Python

因为anaconda是python的一种发行版本所以里面自带python,毕竟python开源,而且anaconda 里面扩展了python,所以在打开终端open with Python的时候是默认使用anaconda 里面的python ,所以也就意味着你不用再去下其他python解释器了,可以说集成了
在这里插入图片描述

运行这段测试代码
import tensorflow as tf
x=tf.constant([[1.0,2.0]])
w=tf.constant([[3.0],[4.0]])
y=tf.matmul(x,w)
with tf.Session():
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True))
    print(sess.run(y))

在这里插入图片描述

你可以看到使用的是GPU运行

在这里插入图片描述

如果出现了一些警告信息关于

Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
这是因为你的电脑支持一些CPU加速指令,但是如果你是用GPU的tensorflow就不用管啦,只需加上下面两句可以消除警告
在这里插入图片描述
了解详情警告信息请看这篇

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页