可能涉及的点。。
图像处理中,如一些去雾去雨算法等,直接在原图上操作的话计算量太大。因而常常下采样原图后再进行处理,处理完后再进行上采样恢复。但直接上采样,如最近邻,双线性等。上采样结果在边缘处效果都不太好。
paper1:Joint Bilateral Upsampling
即下采样处理完后再上采样的过程中,利用原图(大分辨率)的信息来辅助恢复上采样。 f 和 g f和g f和g为双边滤波核, I ~ \tilde I I~为原大分辨率图, p , q p,q p,q为对应大分辨率的坐标, p ↓ 和 q ↓ p\downarrow 和q\downarrow p↓和q↓为对应的在小分辨率下的坐标(即带小数坐标)。S为处理后的小分辨率图, S ~ \tilde S S~为上采样结果。
S ~ p = 1 k p ∑ q ↓ ∈ Ω S q ↓ f ( ∣ ∣ p ↓ − q ↓ ∣ ∣ ) g ( ∣ ∣ I ~ p − I ~ q ∣ ∣ ) (1) \tilde S_p={1\over k_p}\sum_{q\downarrow \in Ω}S_{q\downarrow}f(||p\downarrow - q\downarrow||)g(||\tilde I_p - \tilde I_q||) \tag1 S~p=kp1q↓∈Ω∑Sq↓f(∣∣p↓−q↓∣∣)g(∣∣I~p−I~q∣∣)(1)
在上式中 S q ↓ S_{q\downarrow} Sq↓中的 q ↓ q\downarrow q↓是取整的,而在 f f f中是带小数的。
另,直接上采样(最近邻,双线性等)处理后的小分辨率图,而后在用双边滤波。 I I I为上采样图。
S ~ p = 1 k p ∑ q ∈ Ω I q f ( ∣ ∣ p − q ∣ ∣ ) g ( ∣ ∣ I ~ p − I ~ q ∣ ∣ ) (2) \tilde S_p={1\over k_p}\sum_{q\in Ω}I_qf(||p-q||)g(||\tilde I_p - \tilde I_q||)\tag 2 S~p=k
图像处理与低曝光照片增强

最低0.47元/天 解锁文章
1006

被折叠的 条评论
为什么被折叠?



