如何查看自己电脑的CUDA版本

一种常见的方法是:
常见的通过控制面板来看
因为我的电脑有独立显卡和集成显卡,打按上面照开以后提示,显卡未连接,这个时候就不可用,这时可以通过命令行实现查看。
win + r 调出window系统的命令行,然后输出nvcc -V(注意V是大写的),然后就可以查看你电脑的CUDA版本了。

### 如何在虚拟机中重新安装 CUDA 配置 #### 重装前的准备 为了确保虚拟机中的 CUDA 可以被成功重新安装,建议先清理旧版 CUDA 的残留文件并卸载相关依赖项。可以通过以下命令来彻底清除之前的 CUDA 安装: ```bash sudo apt-get --purge remove "*cublas*" "cuda*" sudo rm -rf /usr/local/cuda* ``` 这一步骤能够有效防止新版本与旧版本之间的冲突[^1]。 #### 创建 Anaconda 虚拟环境 推荐通过 Anaconda 来管理不同版本CUDA 和深度学习框架(如 PyTorch 或 TensorFlow),因为这种方式更加灵活且易于维护。以下是创建虚拟环境的具体方法: ```bash # 创建一个新的Anaconda虚拟环境 conda create -n cuda_env python=3.8 # 激活该虚拟环境 conda activate cuda_env ``` 激活后的环境中可以根据需求单独安装特定版本CUDA 工具包以及对应的深度学习库。 #### 下载适合的 CUDA 版本 访问官方 NVIDIA CUDA Toolkit Archive 页面获取目标版本的下载链接[^3]。对于大多数情况来说,选择稳定版本(例如 CUDA 10.x 或者最新支持的 LTS 版本)会更合适一些。如果是在 Windows 上运行,则参考专门针对此系统的指南[^4];如果是基于 Linux 平台下的 Ubuntu 发行版,则按照具体发行版的要求执行相应指令[^5]。 #### CUDNN 库的配置 除了基本的 CUDA 外部工具链之外,还需要额外安装 cuDNN 支持深度神经网络加速功能。从 NVIDIA 开发者网站下载对应于所选 CUDA 版本号的 cuDNN 文件后解压,并将其路径添加至 LD_LIBRARY_PATH 中去[^2]: ```bash tar -xzvf cudnn*.tgz sudo cp cuda/include/* /usr/local/cuda/include/ sudo cp cuda/lib64/* /usr/local/cuda/lib64/ export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 以上步骤完成了基础设置工作,但需要注意的是,在某些特殊场景比如使用 VMware Workstation Pro 这样的虚拟化解决方案时,可能会遇到显卡直通等问题导致无法正常使用 GPU 加速特性。此时不必强求 nvidia-smi 显示正常结果,只要应用程序能调用到设备资源即可满足大部分开发测试用途。 #### 测试安装效果 最后验证整个流程是否顺利完成,可以尝试编写一段简单的 Python 程序来进行检测: ```python import torch print(torch.cuda.is_available()) # 如果返回True则说明GPU可用 ``` 上述代码片段利用了 PyTorch 提供的功能快速判断当前系统是否有能力加载 GPU 设备。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值