图像去雾毕业论文准备13-深度学习框架(pytorch)——超级详细(线性回归案例讲解)
基于上节的介绍,相信你对pytorch有了简单的了解,我是跟着视频,加上个人理解进行本节的讲解,一方面对课程学习进行加深,一方面对可以方便以后查阅复习,同时还可以给有需要的朋友进行参考,实现资源共享!
参照上之前tensorflow的学习,下面开始讲解!
1 首先导入相关的库文件
# 导入库
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from torch import nn
简单罗列一下
1 torch就是需要的深度学习框架
2 numpy为了进行数据类型操作
3 matplotlib进行绘图显示
4 pandas为了加载数据
5 nn深度学习中常见的功能,里面有大量的API
2 数据读取
data = pd.read_csv('dataset.csv')
# print(data)
# 如果直接这样使用,返回的是andas.core.series.Series格式
X = data.Education
print(X)
print(type(X))
# 所以需要使用array类型,在类型后加上一个values即可转化成array类型
X = data.Education.values.reshape(-1,1).astype(np.float32)
print(X)
print(X.shape)
3 数据预处理
"""
数据预处理
"""
# 通过输入可以将以上的numpy转化成torch
X = torch.from_numpy(data.Education.values.reshape(-1,1)

最低0.47元/天 解锁文章
——超级详细(线性回归案例讲解)&spm=1001.2101.3001.5002&articleId=112223707&d=1&t=3&u=1f53711f6d28495e8b1b12a6557d443e)
1965

被折叠的 条评论
为什么被折叠?



