图像去雾毕业论文准备13-深度学习框架(pytorch)——超级详细(线性回归案例讲解)

图像去雾毕业论文准备13-深度学习框架(pytorch)——超级详细(线性回归案例讲解)

基于上节的介绍,相信你对pytorch有了简单的了解,我是跟着视频,加上个人理解进行本节的讲解,一方面对课程学习进行加深,一方面对可以方便以后查阅复习,同时还可以给有需要的朋友进行参考,实现资源共享!

参照上之前tensorflow的学习,下面开始讲解!

1 首先导入相关的库文件

# 导入库
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from torch import  nn

简单罗列一下
1 torch就是需要的深度学习框架
2 numpy为了进行数据类型操作
3 matplotlib进行绘图显示
4 pandas为了加载数据
5 nn深度学习中常见的功能,里面有大量的API

2 数据读取

data = pd.read_csv('dataset.csv')
# print(data)
# 如果直接这样使用,返回的是andas.core.series.Series格式
X = data.Education
print(X)
print(type(X))
# 所以需要使用array类型,在类型后加上一个values即可转化成array类型
X = data.Education.values.reshape(-1,1).astype(np.float32)
print(X)
print(X.shape)

3 数据预处理

"""
数据预处理
"""
# 通过输入可以将以上的numpy转化成torch
X = torch.from_numpy(data.Education.values.reshape(-1,1)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值