点PY
码龄6年
关注
提问 私信
  • 博客:1,569,739
    社区:203
    问答:22
    动态:281
    视频:557
    1,570,802
    总访问量
  • 882
    原创
  • 1,405
    排名
  • 30,776
    粉丝

个人简介:商务合作、付费咨询、有偿辅导+扣扣1224425503

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-08-16
博客简介:

如果想成为中心,那么就到中心去吧。

博客描述:
工作随手笔记
查看详细资料
  • 原力等级
    领奖
    当前等级
    9
    当前总分
    12,409
    当月
    53
个人成就
  • 人工智能领域优质创作者
  • 博客专家认证
  • 获得2,471次点赞
  • 内容获得1,273次评论
  • 获得10,347次收藏
  • 代码片获得16,179次分享
创作历程
  • 139篇
    2024年
  • 182篇
    2023年
  • 162篇
    2022年
  • 240篇
    2021年
  • 167篇
    2020年
  • 16篇
    2019年
成就勋章
TA的专栏
  • 导航定位
    付费
    70篇
  • 规划控制
    付费
    12篇
  • 机械臂
    付费
    47篇
  • 深度学习模型部署
    付费
    11篇
  • TensorRT模型部署
    付费
    10篇
  • onnxruntime模型部署
    付费
    11篇
  • 智能感知处理
    付费
    61篇
  • 智能遥感图像处理
    付费
    12篇
  • ROS
    付费
    60篇
  • 地理矢量处理
    付费
    31篇
  • paper
    72篇
  • 目标跟踪
    19篇
  • 自监督
    5篇
  • 多传感器标定
    4篇
  • 点云处理
    4篇
  • 机器人仿真
    5篇
  • ROS2
    9篇
  • docker
    13篇
  • 多机通讯
    14篇
  • 无人农场
    9篇
  • object counting
    1篇
  • 机器人
    2篇
  • 人工智能
    2篇
  • 主动学习
    1篇
  • 图神经网络
    11篇
  • 黑马STL
    13篇
  • Jetson Nano
    4篇
  • 数学
    3篇
  • 扶不起的遥感
    64篇
  • 人体姿势估计
    13篇
  • 人脸检测
    3篇
  • 自动驾驶
    6篇
  • 多视角立体视觉
    4篇
  • github
    4篇
  • 图像处理
    29篇
  • 目标检测
    37篇
  • 语义分割
    29篇
  • opencv
    13篇
  • 边缘检测
    11篇
  • 树莓派历险记
    11篇
  • 对抗迁移学习
    11篇
  • 实用工具
    12篇
  • arcgis
    7篇
  • 显著性检测
    4篇
  • 关键点检测
    7篇
  • 图像分类
    4篇
  • 数据增强
    8篇
  • 强化学习
    11篇
  • c++
    20篇
  • numpy
    5篇
  • arcpy
    1篇
  • pandas
    2篇
  • sklearn
    1篇
  • leetcode
    38篇
  • 实例分割
    4篇
  • ubuntu
    7篇
  • anaconda
    1篇
  • linux
    9篇
  • gdal
    17篇
  • python
    31篇
  • 深度学习
    51篇
  • pytorch
    26篇
兴趣领域 设置
  • 人工智能
    计算机视觉深度学习神经网络自动驾驶图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PCD可视化(C++)

【代码】PCD可视化(C++)
原创
发布博客 2024.11.04 ·
228 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

使用传感器融合进行3D激光雷达点云运动补偿

自我车辆运动会导致从附加激光雷达传感器收集的点云数据失真。失真程度取决于自车速度和激光雷达传感器的扫描速率。机械激光雷达传感器通过旋转反射激光脉冲的镜子来扫描环境,并生成周围环境的点云数据。该镜子的旋转速度决定了传感器的扫描速率。激光雷达传感器生成点云数据,假设每次测量都是从同一视点捕获的,但自我车辆运动会改变镜子的旋转,从而改变传感器捕获数据的视点。假设视点和实际视点之间的差异会导致生成的点云失真。该图显示了当自我车辆移动时如何发生失真以及如何通过使用点云中每个点的自我车辆姿态来补偿失真的顶视图。
原创
发布博客 2024.10.30 ·
223 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

camera和lidar外参标定

雷达和相机的外参标定(外部参数标定)指的是确定两者之间的旋转和平移关系,使得它们的坐标系可以对齐。
原创
发布博客 2024.10.29 ·
775 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

相机内参标定

Camera Calibration是ROS提供的一个用于单目或者双目相机标定的包,可以十分方便地使用。使用的标定板是棋盘格(Chessboard),而非AprilTag。官网见这里。其实在官网上写了,这个包基于OpenCV实现,原理是一样的。在官网给出了利用它标定单目和双目相机的例子,感兴趣可以参考。安装标定功能包打印棋盘格:可直接下载此文件并打印(原尺寸居中)出来:棋盘格标定板标定原理启动标定:c.按照提示移动不停移动,等”CALIBRATE”按钮变绿以后,就可以点击标定了。
原创
发布博客 2024.10.25 ·
320 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

多传感器硬同步学习

多传感器硬同步(Hardware Synchronization)的过程是指通过硬件信号使多个传感器在同一时刻进行数据采集,以确保不同传感器的数据具有相同的时间基准。以下是多传感器硬同步的简要步骤:主时钟源(同步信号源):选择一个主时钟源,通常是高精度时钟(如GPS、PPS信号或高频时钟脉冲),作为所有传感器的时间基准。该时钟源通过硬件接口(如信号线)向其他传感器发送同步信号。传感器接口设置:各个传感器需要有同步接口,通常通过硬件触发输入(trigger input)或外部时钟输入端口接受同步信号。
原创
发布博客 2024.10.23 ·
84 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

利用彩色相机给激光点云染色

在激光SLAM(Simultaneous Localization and Mapping)中,使用彩色相机为激光点云染色是一个常见的做法。这种技术结合了激光雷达的高精度距离测量和相机的丰富色彩信息,使得生成的点云不仅包含空间位置信息,还包含颜色信息,从而更直观和细节丰富。传感器校准: 目的是确定激光雷达和相机之间的外部参数(旋转和平移矩阵),以及相机的内部参数(焦距、主点、畸变系数等)。
原创
发布博客 2024.10.23 ·
913 阅读 ·
23 点赞 ·
0 评论 ·
0 收藏

在ros中sensor_msgs/CompressedImage在线转sensor_msgs/Image

在ROS中使用image_transport可以有效地管理图像传输,并支持多种传输插件格式,包括压缩图像格式。为了使用image_transport将 sensor_msgs/CompressedImage 转换为 sensor_msgs/Image,我们需要稍作修改。image_transport 提供了更为灵活和高效的方式来订阅和发布图像消息。这样,你就可以在 image_transport 框架下完成从压缩图像到非压缩图像的转换和发布流程了。在launch文件中,加入以下命令。
原创
发布博客 2024.10.22 ·
56 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

slam技术支持下的果园作物估产论文汇总

我们介绍了FruitNeRF,一个统一的新的水果计数框架,利用最先进的视图合成方法直接在3D中计数任何水果类型。我们的框架采用一组由单眼相机捕获的无序姿态图像,并在每张图像中分割水果。为了使我们的系统独立于水果类型,我们使用了一个基础模型,为任何水果生成二进制分割掩模。利用RGB和语义这两种模式,我们训练了一个语义神经辐射场。通过对隐式果场的均匀体积采样,得到了纯果点云。通过对提取的点云进行级联聚类,实现了精确的果实计数。
原创
发布博客 2024.10.22 ·
686 阅读 ·
17 点赞 ·
0 评论 ·
18 收藏

KD-Tree-KNN Search学习笔记

树的每个内部节点代表点云的一个子集,并根据选定的坐标轴分为两个子节点。因此,点云分析的第一步也是主要步骤是将点配对以进行有意义的比较。当数据点分布不均匀时,空间的某些区域可能比其他区域拥有更多的点。然后算法递归遍历包含最近点的子节点,直到找到最近点。当树中的某些节点比其他节点拥有更多的点时,就会发生这种情况。尽管网格采样是点配对的替代方法,但由于子采样过程(可能包括平均),它仍然会比点配对产生更粗糙的数据。最后,它返回最近点的坐标。另一方面,与网格采样相比,点配对排除了平均,并产生更深入、更细粒度的结果。
原创
发布博客 2024.10.22 ·
33 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

可视化rosbag包话题的时间戳

时间戳将绘制在一个图表中,其中x轴表示时间(以秒为单位),y轴表示话题名称。每个话题的时间戳将显示为图表中的一个折线。您可以使用图表中的缩放和平移工具来调整视图。通过这种可视化,您可以轻松对比不同话题的时间戳,并识别任何时间戳不一致或延迟。在rqt_bag窗口中,单击“打开”按钮并选择要可视化的ROS bag文件。选择要对比的时间戳的话题。为此,请在“主题”选项卡中选中相应的复选框。在“图表”选项卡中,选择“时间戳”作为要绘制的字段。单击“播放”按钮开始可视化时间戳。输入以下命令启动rqt_bag。
原创
发布博客 2024.10.22 ·
59 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FAST-LIVO复现

PS:可能遇到的问题 CV_* ’was not declared in this scope,opencv4部分命名发生变换,将CV_WINDOW_AUTOSIZE改为WINDOW_AUTOSIZE;CV_TM_SQDIFF_NORMED改为TM_SQDIFF_NORMED。FAST-LIVO通过使用LiDAR点云建立环境地图,IMU提供高频率的动态信息,视觉传感器提供纹理信息,综合这些数据源来提高定位的精度和鲁棒性。这种多传感器融合的方法使其在动态和复杂环境中也能保持高精度的位姿估计。
原创
发布博客 2024.10.15 ·
373 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

视觉雷达融合的多目标跟踪论文汇总

本文提出了一种结合照相机和激光雷达数据的自动驾驶汽车多模态多目标跟踪(MOT)算法。相机帧使用最先进的三维物体探测器进行处理,而经典的聚类技术被用于处理激光雷达的观测结果。所提出的MOT算法包括一个三步进关联过程、一个用于估计每个被检测到的动态障碍的运动的扩展卡尔曼滤波器和一个轨迹管理阶段。EKF运动模型需要当前测量的被观测物体的相对位置和方向,以及自我车辆的纵向和角速度作为输入。与大多数最先进的多模态MOT方法不同,所提出的算法不依赖于地图或自我全局姿态的知识。
原创
发布博客 2024.10.15 ·
845 阅读 ·
35 点赞 ·
0 评论 ·
8 收藏

yolov8-pose的TensorRT动态库部署(C++)

为了方便使用,基于上述开源代码,将其封装成动态库,方便调用。
原创
发布博客 2024.10.09 ·
443 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用CMake构建C动态库

在第 50–55 行 (SET_TARGET_PROPERTIES ) 中,我们定义 PUBLIC_HEADER 参数,该参数声明哪些头文件 (.h) 将被视为外部文件(在示例中为 ).这些文件将使用 INSTALL 指令在系统内传播(参见第 65 行),以便其他程序在编译时将它们包含在其源代码中,并链接到库 文件在链接时。这里有一些有趣的事情。在第 20 行,您可以看到一个名为 compute 的更“复杂”的函数,它接受两个双精度数作为输入(操作的操作数)和一个定义要执行的操作的 enum他们。
原创
发布博客 2024.10.08 ·
1167 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

BUG记录:add_library cannot create ALIAS target “TensorRT::TensorRT“

为了修复你遇到的 add_library 错误,可以修改 FindTensorRT.cmake 使得 TensorRT 目标可以全局可见或者调整别名的创建方式。
原创
发布博客 2024.10.08 ·
110 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

多目标跟踪中的关联代价函数

因此,当试图将一个对象与丢失的几帧前的轨迹关联起来时,IoU可能会失败,因为边界框可能不会由于对象在丢失期间的运动而重叠。其中,∆h(box1,box2)表示边界框之间的高度差,而∆w(box1,box2)表示它们的宽度差。此外,hc和wc表示包含两个边界框的最小矩形的高度和宽度。为了解决这个问题,引入了DIoU,它使用边界盒中心之间的欧氏距离作为相似性度量。IOU有个主要的缺点,如果|A∩B|=0,IoU(A,B)=0。为了克服这一限制,引入了EIoU,其中包括边界框的宽度和高度的一致性。
原创
发布博客 2024.09.25 ·
409 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

图像匹配相关论文汇总

SuperPointDISKALIKEDXFeatLightGlue
原创
发布博客 2024.09.20 ·
156 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

大田上的路径跟踪论文汇总

自动地头转弯是农业作业中的重要组成部分。最小化时间和行驶距离,最大限度地提高车辆的运行效率是当前关注的问题。本研究试图提出一种基于非对称开关回转法的四轮车辆动态转弯路径规划方法。当农用车辆在现场滑动时,该算法将根据车辆的实时位置动态重新规划路线,以提高运行效率,减少频繁调整方向盘造成的机械磨损。仿真结果表明,当行宽为2m,并添加一些噪声时,该算法规划的轨迹长度减少了31.42 %,横向偏差降低了95.65 %。
原创
发布博客 2024.09.19 ·
637 阅读 ·
16 点赞 ·
0 评论 ·
15 收藏

基于Sparse Optical Flow 的Homography estimation

【代码】基于Sparse Optical Flow 的Homography estimation。
原创
发布博客 2024.09.18 ·
522 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

基于SIFT / ORB的Homography estimation

【代码】基于SIFT / ORB的Homography estimation。
原创
发布博客 2024.09.18 ·
408 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多