clickhouse数据模型之有序漏斗分析
什么是有序漏斗,有序漏斗需要满足所有用户事件链上的操作都是逡巡时间先后关系的,且漏斗事件不能有断层,触达当前事件层的用户也需要经历前面的事件层
前言
接上一章智能路径分析,假设我们已经得到了触达支付购买的路径有 “首页->详情页->购买页->支付“ 和 “搜索页->详情页->购买页->支付“ 两个主要路径,但是我们不清楚哪条路径转化率高,那么这个时候漏斗分析就派上用场了
漏斗模型是一个倒置的金字塔形状,主要用来分析页面与页面 功能模块之前的转化情况,下面一层都是基于紧邻的上一层转化而来的,也就是说前一个条件是后一个条件成立的基础;解决此类场景clickhouse提供了一个名叫windowFunnel的函数来实现:
windowFunnel(window)(timestamp, cond1, cond2, ..., condN)
- window:窗口大小,从第一个事件开始,往后推移一个窗口大小来提取事件数据
- timestamp:可以是时间或时间戳类型,用来对时事件进行排序
- cond:每层满足的事件
为了便于大家理解,这里举个简单的栗子:
# 创建一张用户行为表,至少包含时间、事件、用户id
CREATE TABLE test.action
(
`uid` Int32,
`event_type` String,
`time` datetime
)
ENGINE = MergeTree()
PARTITION BY u

本文介绍了ClickHouse中的有序漏斗分析,用于分析用户事件的转化情况。借助windowFunnel函数,结合时间窗口和特定事件条件,可以揭示用户行为路径的转化效率。通过实例展示了如何处理数据以形成完整的漏斗展示,帮助理解各步骤间的转化率。
最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



