多个进程的 logging
向同一个 .log
文件写入是一套Python程序被多次启动时(多进程启动)无法回避的问题。
一个进程的程序正在向.log文件写入的同时,另一个进行启动的程序也需要向同一个.log文件写入,会产生异常吗?答案是:会的!
直接写入存在的问题
如果多个进程直接使用 Python 的 logging
模块向同一个文件写入日志,可能会出现日志内容混乱、数据丢失等问题。这是因为多个进程同时访问和修改文件时,可能会导致文件指针冲突、写入内容覆盖等情况。
当然,多进程同时写入某一个.log是可以实现的,但需要考虑一些问题并采用合适的方法,以下为你详细介绍不同的实现方式及各自的优缺点。
解决方法
1. 使用 FileHandler
加锁(不推荐)
Python 的 logging.FileHandler
本身并不支持多进程安全写入。虽然可以手动加锁来保证同一时间只有一个进程可以写入文件,但实现起来比较复杂,且性能可能会受到影响。
import logging
import threading
# 创建一个锁对象
lock = threading.Lock()
class MultiProcessFileHandler(logging.FileHandler):
def emit(self, record):
try:
with lock:
super().emit(record)
except Exception:
self.handleError(record)
# 配置日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = MultiProcessFileHandler('example.log')
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
# 模拟多进程写入日志
def log_message():
for i in range(5):
logger.info(f"Message {i} from process")
if __name__ == "__main__":
import multiprocessing
processes = []
for _ in range(3):
p = multiprocessing.Process(target=log_message)
processes.append(p)
p.start()
for p in processes:
p.join()
缺点:这种方法是笔者最不推荐的方法!它使用线程锁,对于多进程并不适用,因为每个进程都有自己独立的内存空间,线程锁无法在进程间共享 !
2. 使用 ConcurrentLogHandler
(推荐)
ConcurrentLogHandler
是一个第三方库 concurrent-log-handler
提供的处理程序,它专门用于处理多进程并发写入日志文件的问题。
安装:
pip install concurrent-log-handler
示例代码:
import logging
from concurrent_log_handler import ConcurrentRotatingFileHandler
# 配置日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = ConcurrentRotatingFileHandler('example.log', maxBytes=1024*1024, backupCount=5)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
# 模拟多进程写入日志
def log_message():
for i in range(5):
logger.info(f"Message {i} from process")
if __name__ == "__main__":
import multiprocessing
processes = []
for _ in range(3):
p = multiprocessing.Process(target=log_message)
processes.append(p)
p.start()
for p in processes:
p.join()
ConcurrentRotatingFileHandler
与 RotatingFileHandler的使用方法一致。注:在应用后会产生._XXX.lock(其中XXX位置是您的log日志的name),这实属正常,说明ConcurrentRotatingFileHandler
为了解决多进程的访问,不可避免的引入了“锁”的机制,只是此锁非彼锁。
优点:ConcurrentRotatingFileHandler
可以自动处理多进程并发写入的问题,保证日志内容不会混乱,同时还支持日志文件的轮转功能。
3. 使用消息队列(如 Redis、RabbitMQ)
如果您在实际应用中,因为同时爆发的超巨量日志,而导致应用变慢,那么可以考虑建立一套真正的大型日志系统了。方法如下:
可以让每个进程将日志消息发送到消息队列中,然后由一个单独的进程从消息队列中读取消息并写入日志文件。
示例代码(使用 Redis 作为消息队列):
import logging
import redis
import multiprocessing
# 生产者进程:将日志消息发送到 Redis 队列
def producer():
r = redis.Redis()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
for i in range(5):
message = f"Message {i} from process"
r.rpush('log_queue', message)
logger.info(message)
# 消费者进程:从 Redis 队列中读取消息并写入日志文件
def consumer():
r = redis.Redis()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = logging.FileHandler('example.log')
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
while True:
message = r.lpop('log_queue')
if message is None:
break
logger.info(message.decode())
if __name__ == "__main__":
producers = []
for _ in range(3):
p = multiprocessing.Process(target=producer)
producers.append(p)
p.start()
for p in producers:
p.join()
c = multiprocessing.Process(target=consumer)
c.start()
c.join()
优点:这种方法将日志写入操作集中到一个进程中,避免了多进程直接写入文件的冲突问题,同时可以实现日志的异步处理,提高性能。缺点是需要额外的依赖(如 Redis),增加了系统的复杂度。
总结:
如果您的Python程序可能存在多次被同时运行的情况,也就是多进程同时运行您的程序的情况,为保证程序日志输出的正确性和稳定性,应该使用 ConcurrentLogHandler代替普通的FileHandler。