今天的内容是排序部分剩下的四大算法
冒泡排序
冒泡排序思路比较简单:
- 将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素;
( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;) - 对序列当中剩下的n-1个元素再次执行步骤1。
- 对于长度为n的序列,一共需要执行n-1轮比较
(利用while循环可以减少执行次数) - 代码实现
#冒泡排序
def bubble_sort(L):
length = len(L)
#序列长度为length,需要执行length-1轮交换
for x in range(1,length):
#对于每一轮交换,都将序列当中的左右元素进行比较
#每轮交换当中,由于序列最后的元素一定是最大的,因此每轮循环到序列未排序的位置即可
for i in range(0,length-x):
if L[i] > L[i+1]:
temp = L[i]
L[i] = L[i+1]
L[i+1] = temp
快速排序
快速排序的基本思想:挖坑填数+分治法
- 从序列当中选择一个基准数(pivot)
在这里我们选择序列当中第一个数最为基准数 - 将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧
- 重复步骤1.2,直到所有子集当中只有一个元素为止。
用伪代码描述如下:
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中
- 代码实现:
#快速排序
#L:待排序的序列;start排序的开始index,end序列末尾的index
#对于长度为length的序列:start = 0;end = length-1
def quick_sort(L,start,end):
if start < end:
i , j , pivot = start , end , L[start]
while i < j:
#从右开始向左寻找第一个小于pivot的值
while (i < j) and (L[j] >= pivot):
j = j-1
#将小于pivot的值移到左边
if (i < j):
L[i] = L[j]
i = i+1
#从左开始向右寻找第一个大于pivot的值
while (i < j) and (L[i] < pivot):
i = i+1
#将大于pivot的值移到右边
if (i < j):
L[j] = L[i]
j = j-1
#循环结束后,说明 i=j,此时左边的值全都小于pivot,右边的值全都大于pivot
#pivot的位置移动正确,那么此时只需对左右两侧的序列调用此函数进一步排序即可
#递归调用函数:依次对左侧序列:从0 ~ i-1//右侧序列:从i+1 ~ end
L[i] = pivot
#左侧序列继续排序
quick_sort(L,start,i-1)
#右侧序列继续排序
quick_sort(L,i+1,end)
归并排序
-
- 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个典型的应用。它的基本操作是:将已有的子序列合并,达到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
- 归并排序其实要做两件事:
- 分解----将序列每次折半拆分
- 合并----将划分后的序列段两两排序合并
因此,归并排序实际上就是两个操作,拆分+合并
- 如何合并?
L[first...mid]为第一段,L[mid+1...last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first...last]并且也有序。
- 首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
- 重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
- 此时将temp[]中的元素复制给L[],则得到的L[first...last]有序
- 如何分解?
在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列
分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。
-
代码实现
-
# 归并排序 #这是合并的函数 # 将序列L[first...mid]与序列L[mid+1...last]进行合并 def mergearray(L,first,mid,last,temp): #对i,j,k分别进行赋值 i,j,k = first,mid+1,0 #当左右两边都有数时进行比较,取较小的数 while (i <= mid) and (j <= last): if L[i] <= L[j]: temp[k] = L[i] i = i+1 k = k+1 else: temp[k] = L[j] j = j+1 k = k+1 #如果左边序列还有数 while (i <= mid): temp[k] = L[i] i = i+1 k = k+1 #如果右边序列还有数 while (j <= last): temp[k] = L[j] j = j+1 k = k+1 #将temp当中该段有序元素赋值给L待排序列使之部分有序 for x in range(0,k): L[first+x] = temp[x] # 这是分组的函数 def merge_sort(L,first,last,temp): if first < last: mid = (int)((first + last) / 2) #使左边序列有序 merge_sort(L,first,mid,temp) #使右边序列有序 merge_sort(L,mid+1,last,temp) #将两个有序序列合并 mergearray(L,first,mid,last,temp) # 归并排序的函数 def merge_sort_array(L): #声明一个长度为len(L)的空列表 temp = len(L)*[None] #调用归并排序 merge_sort(L,0,len(L)-1,temp)
基数排序
-
- 基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序。
分配:我们将L[i]中的元素取出,首先确定其个位上的数字,根据该数字分配到与之序号相同的桶中
收集:当序列中所有的元素都分配到对应的桶中,再按照顺序依次将桶中的元素收集形成新的一个待排序列L[ ]
对新形成的序列L[]重复执行分配和收集元素中的十位、百位...直到分配完该序列中的最高位,则排序结束 - 根据上述“基数排序”的展示,我们可以清楚的看到整个实现的过程
- 基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序。
- 代码实现
#************************基数排序****************************
#确定排序的次数
#排序的顺序跟序列中最大数的位数相关
def radix_sort_nums(L):
maxNum = L[0]
#寻找序列中的最大数
for x in L:
if maxNum < x:
maxNum = x
#确定序列中的最大元素的位数
times = 0
while (maxNum > 0):
maxNum = (int)(maxNum/10)
times = times+1
return times
#找到num从低到高第pos位的数据
def get_num_pos(num,pos):
return ((int)(num/(10**(pos-1))))%10
#基数排序
def radix_sort(L):
count = 10*[None] #存放各个桶的数据统计个数
bucket = len(L)*[None] #暂时存放排序结果
#从低位到高位依次执行循环
for pos in range(1,radix_sort_nums(L)+1):
#置空各个桶的数据统计
for x in range(0,10):
count[x] = 0
#统计当前该位(个位,十位,百位....)的元素数目
for x in range(0,len(L)):
#统计各个桶将要装进去的元素个数
j = get_num_pos(int(L[x]),pos)
count[j] = count[j]+1
#count[i]表示第i个桶的右边界索引
for x in range(1,10):
count[x] = count[x] + count[x-1]
#将数据依次装入桶中
for x in range(len(L)-1,-1,-1):
#求出元素第K位的数字
j = get_num_pos(L[x],pos)
#放入对应的桶中,count[j]-1是第j个桶的右边界索引
bucket[count[j]-1] = L[x]
#对应桶的装入数据索引-1
count[j] = count[j]-1
# 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表
for x in range(0,len(L)):
L[x] = bucket[x]
排序部分就先这样,后续再补充一些新的内容