- 博客(500)
- 资源 (3)
- 收藏
- 关注
原创 Rust 中的枚举(Enum):从 IP 地址到 Option 的应用
当我们在 Rust 中定义数据结构时,通常会优先考虑使用结构体(struct)来聚合相关字段,例如一个 `Rectangle` 结构体里放宽和高。但如果场景是“某个值只能是若干个可能的选项之一”,这时使用枚举(enum)会更加合适。例如,对于“形状”,一个形状(Shape)可以是矩形(Rectangle)、圆形(Circle)或三角形(Triangle)中的一种;又或者在网络编程中,我们通常遇到 IPv4 和 IPv6 两种 IP 地址类型。**枚举**提供了一种把“同一类型下的不同可能性”集中管理的方式。
2025-01-25 09:00:00
750
原创 深入浅出 Rust 的强大 match 表达式
Rust 提供了一个功能丰富且极具表现力的控制流程(control flow)结构——match。它跟许多语言中的 switch 语句类似,但借助 Rust 的模式匹配(pattern matching)特性以及“穷尽匹配”(exhaustiveness)的强制性,match 要比传统的 switch 更加强大。在本文中,我们将深入探讨 match 的工作原理、如何处理特殊情况,以及为什么它成为许多 Rust 开发者的心头好。
2025-01-25 09:00:00
1006
1
原创 Rust 中的方法与关联函数详解
在 Rust 中,如果你想为自定义类型(例如 `struct`)实现某些行为,可以使用 **方法(methods)** 和 **关联函数(associated functions)**。它们与普通函数(functions)类似,都是使用 `fn` 关键字来定义,但也有不少特别之处。本文会结合示例,带大家一步步了解如何编写方法、方法与函数的区别、以及如何使用关联函数来简化类型的构造或其它功能。
2025-01-24 11:48:32
1048
原创 使用 Structs 计算矩形面积:从单变量到结构体的进化之路
在 Rust 中,结构体(struct)是一种非常有用的数据组织方式,能够将多项相关数据打包在一起,既能提升可读性,又可避免在函数参数或返回值中出现过于混乱的情况。本文将通过一个计算矩形面积的示例,带你体会从“单个变量”到“元组”再到“结构体”的代码演进,以及最后如何借助 #[derive(Debug)] 和 dbg! 宏进行调试输出。
2025-01-24 11:43:11
788
原创 Rust 中的结构体使用指南
在 Rust 中,结构体(*struct*)是一种非常常用的数据结构,用于将多个相关的字段(值)打包在一起,从而更好地组织代码。与元组相比,结构体具有**命名字段**的特性,因此在访问和更新数据时更加清晰、灵活。本文将结合代码示例,逐步介绍如何定义结构体、创建实例、使用更新语法、元组结构体以及如何处理结构体中的所有权问题。
2025-01-24 11:16:02
628
原创 深入理解 Rust Slice:安全、简洁的部分数据引用
的编译错误,强制你先放弃不可变引用,才能进行可变操作。这正是 Rust 所谓的“借用规则”:同一时刻,要么只拥有一个可变引用,要么只拥有任意数量的不可变引用。它是一种“只读视图”,本身并不拥有所指向的数据(因此没有所有权)。的意义、用法以及它在 Rust 所解决的问题(让借用更安全、更直观)。是一个不可变引用,这也是为什么字符串字面值通常是不可变的:它们在编译期就被分配并存储在程序的只读区域里。当我们谈到字符串时,最常用的就是“字符串 slice(string slice)”,类型写作。
2025-01-23 09:00:00
843
1
原创 Rust 中的引用与借用:深入理解所有权与数据安全
在学习 Rust 的过程中,所有权(Ownership)是一个核心概念,它确保了数据的安全性和高效的内存管理。然而,所有权的严格规则有时会让我们面临一些问题,例如将一个变量传递给函数时,可能会失去对该变量的所有权。为了应对这种情况,Rust 提供了 引用(Reference)和 借用(Borrowing)的机制,让我们可以更灵活地操作数据,同时保持内存安全。
2025-01-22 11:55:47
677
原创 理解 Rust 的所有权:内存管理的独特之道
Rust 是一门以性能和安全性为核心设计的系统编程语言,而其最为独特的特性之一便是所有权(Ownership)系统。所有权是一套规则,用于管理程序运行期间的内存分配和释放。Rust 的所有权机制通过编译时检查,确保内存安全,避免了许多常见的内存管理问题。本文将系统讲解所有权的核心概念和相关规则。
2025-01-22 11:45:46
1114
原创 滤波器与AI
滤波器是处理信号的工具,旨在从复杂的数据中筛选出对我们任务有价值的部分。可以简单地理解为一个工具或算法,用于“过滤”掉数据中的不需要的成分(如噪声或无关特征),同时保留最相关的信息。滤波器在不同领域有着不同的表现形式,但其基本目标是一致的——增强信号的有效成分,抑制无效部分。在图像处理中,滤波器常常用于去噪、模糊、锐化等;在信号处理中,它们用于消除不需要的频率成分;在深度学习中,滤波器则用于特征提取,尤其是在卷积神经网络(CNN)中,滤波器帮助模型从原始图像中提取出有用的视觉特征。高通滤波器。
2025-01-21 09:00:00
676
原创 Rust 控制流:条件语句与循环
在Rust中,控制流是程序结构中至关重要的一部分,决定了程序如何根据不同的条件执行不同的代码。Rust提供了多种控制流方式,包括`if`表达式和循环(如`loop`、`while`和`for`)。本文将深入探讨这些控制流机制,帮助你理解如何在Rust中使用条件语句和循环来控制程序的执行流程。
2025-01-20 09:45:00
994
1
原创 Rust 中的注释(comments)
Rust注释并不仅仅是一种编程语言的“配角”,它是帮助我们写出可读、可维护的代码的重要手段。无论是基础的单行注释、行尾注释,还是能够自动生成文档并支持示例测试的文档注释,都构成了Rust生态中不可或缺的一环。对个人而言,注释的优质与否,体现了你的编码态度与专业水平。对团队而言,注释是促进成员沟通、保证项目高质量运转的润滑剂。对开源社区而言,文档注释决定了一个库或工具能否被更多人所接受、学习和使用。在今后的Rust学习和实战中,你会越来越体会到注释带来的价值。
2025-01-20 09:00:00
1041
原创 在 Rust 中优雅地使用函数(Functions)
函数在Rust里无处不在。你已经见过最重要的函数:`main`函数,它是绝大多数Rust程序的入口点。Rust使用关键字`fn`来声明新函数,并遵循特定的命名规范——蛇形命名(snakecase),即全小写,并用下划线`_`分隔单词。
2025-01-20 08:30:00
951
原创 Rust 数据类型详解
在Rust中,每个值都隶属于某个**数据类型**(_datatype_),它告诉编译器该值是什么类型,从而使编译器知道如何处理这些数据。本文将介绍两种主要的数据类型子集:**标量类型**(scalar)和**复合类型**(compound)。需要注意的是,Rust是一门**静态类型**(_staticallytyped_)语言,这意味着在编译时就必须知道所有变量的类型。大多数情况下,编译器可以根据值的使用方式自动推断类型;
2025-01-19 18:51:19
1290
原创 Rust 中变量与可变性
在Rust语言中,变量默认是**不可变的**(immutable),这一设计初衷是为了帮助我们在编写代码时充分利用编译器带来的安全性,同时减少并发编程中的潜在问题。虽然不可变是默认,但我们依然可以选择让某些变量变为可变(mutable)。Rust鼓励多使用不可变变量,但在某些场合下,可变变量也非常有用。本篇博客将详细探讨为什么Rust中的变量默认不可变,以及在需要的时候如何使用可变变量。随后也会介绍**常量(constants)**以及**遮蔽(shadowing)**等概念。
2025-01-19 18:47:09
1142
原创 Rust 猜数字游戏:从 0 到 1 的完整实现与深入解析
关键词:Rust、猜数字、Cargo、IO、随机数、错误处理、所有权、match、ResultRust 语言以其在系统层面提供的内存与线程安全保障、高性能,以及活跃友好的生态而备受关注。对于初学者而言,既想快速入门,又希望能在“做中学”,一个“小而全”的示例项目往往能让我们更好地理解 Rust 的核心概念。本篇博客将带你一步步实现一个“猜数字(Guessing Game)”的小游戏,涵盖**项目初始化、依赖管理、读取输入、生成随机数、逻辑判断、错误处理、循环控制**等方方面面,让你在实践中学习和
2025-01-18 11:48:34
736
原创 使用 Cargo 打开 Rust 世界的大门
Rust 的世界以其强大和安全著称,而其中的关键助手就是 Cargo ——Rust 的构建系统和包管理器。它简化了项目管理、依赖处理和代码构建,使开发过程更高效。今天,我们通过一个简单的 "Hello, world!" 项目,来探索 Cargo 的基本功能和用法。
2025-01-18 11:36:15
665
原创 用 Rust 写下第一个 “Hello, World!”
现在,正是时候来写下我们的第一个 Rust 程序:它将会在屏幕上打印出“Hello, world!”这句传统的问候语。通过这个简单的小程序,你会初步感受到 Rust 的编程体验。
2025-01-17 14:29:12
1182
1
原创 从 0 开始安装 Rust:让我们一起入坑吧!
Rust 是一门追求“安全、并发、高性能”的编程语言,兼具了底层语言的高性能和强类型语言的安全性。无论你是有多年编程经验的开发者,还是刚刚学习编程的萌新,都能在 Rust 的世界里找到乐趣并发挥所长。本篇文章将详细介绍如何在各大主流平台(Linux、macOS、Windows)上安装 Rust,让你以最快的速度开始 Rust 之旅!
2025-01-17 13:05:56
1090
原创 深度学习模型参数的原理与实践
模型参数(Parameters)是指在训练过程中,通过对训练数据的多次迭代和优化算法(如梯度下降、Adam 等)来“学习”得到的那些数值。可训练:模型参数是可训练的,它们的初始值可以随机产生或采用其他初始化策略(如 Xavier、Kaiming 初始化),之后在训练过程中不断被更新。直接参与预测:一旦模型训练完成,模型参数即为最终用来进行预测或推断(Inference)的关键因素。对于同样的模型结构,如果训练结果不一样(参数不同),它的预测行为也会有所差异。与模型结构强相关。
2025-01-16 12:52:26
961
原创 深度学习的超参数
在本博客中,我们从超参数的基本概念出发,依次探讨了常见的超参数类型、不同的调优方法,以及在实际场景中如何进行调优实践。超参数调优在大幅提升模型表现的同时,也暗藏了一些“陷阱”,如果不加以注意,可能导致模型性能受到影响或结果解读失误。与模型参数(如神经网络的权重和偏置)不同,超参数在训练过程中是固定的,不会通过数据直接学习得到。在该示例中,Optuna 会根据前几次试验的结果,自动评估下一步试验的超参数,从而更有效地搜索最优解。是在模型训练前由开发者设置的参数,这些参数决定了模型的训练过程和模型的结构。
2025-01-15 12:33:11
994
原创 Java 垃圾回收全面剖析:从基础到实战优化
随着应用规模的扩大和硬件复杂性的提升,垃圾回收技术的优化和性能改进显得尤为重要。垃圾回收(Garbage Collection, GC)是现代编程语言中一个至关重要的机制,旨在自动管理内存,释放不再使用的对象所占用的资源。引用计数算法是一种较早期的垃圾回收实现方式,其核心思想是通过维护一个引用计数器,记录每个对象被引用的次数。标记-清除(Mark-Sweep)是垃圾回收算法的基础,也是最早被提出的一种算法。通过结合以上算法的优缺点,现代垃圾回收器通常采用分代回收策略,针对不同代的特点选择最优算法。
2025-01-14 15:58:53
907
原创 深度学习中的池化层
8.1 池化层的重要性回顾池化层在深度学习,尤其是卷积神经网络(CNN)中,扮演着不可或缺的角色。它的核心功能是对特征图进行降维,通过提取局部区域的重要特征来降低计算复杂度和内存消耗,同时增强模型的鲁棒性。特征提取:通过最大池化或平均池化操作,池化层能提取显著特征(如边缘和纹理)或全局平滑特征。降维与效率提升:减少特征图尺寸,降低模型参数和计算需求,尤其在处理高分辨率输入时。抗噪性与鲁棒性:对输入特征的微小变形(如平移、旋转或噪声)具有较强的抵抗能力。广泛适用性。
2025-01-14 09:00:00
922
原创 深入理解 HOG 特征:原理、实现与应用案例
9.1 HOG 的技术价值高效的特征表达HOG 利用局部梯度方向直方图,能够有效捕捉图像的形状和边缘信息,特别适合检测具有明显几何特征的目标(如行人、车辆等)。鲁棒性与泛用性对光照、对比度变化具有较强的鲁棒性,使其适用于各种光线条件下的目标检测任务。通用性强,可以与多种分类器(如 SVM)结合完成不同类型的检测任务。易于实现与优化HOG 的算法直观、计算过程简单,在许多计算机视觉工具(如 OpenCV)中已内置支持。
2025-01-13 13:08:06
730
原创 SURF技术详解
SURF是一种改进版本的SIFT(Scale-Invariant Feature Transform,尺度不变特征变换),通过引入积分图和快速Hessian矩阵方法,实现了对特征点的高效检测与描述。在实践中,OpenCV提供了对SURF的标准实现,但在实际应用中,可以通过多种方法进一步提升SURF的性能,包括算法优化和硬件加速。特征点匹配是SURF算法的关键步骤,目的是找到两幅图像中对应的特征点,为后续任务(如图像拼接、目标跟踪等)提供基础。匹配的核心是比较特征点的描述符,评估它们之间的相似性。
2025-01-13 10:46:55
856
原创 SIFT 全面解析:原理、实现与应用
(尺度不变特征变换),是一种用于图像特征检测和描述的经典算法。它通过提取图像中的局部关键点,并为每个关键点生成具有尺度和旋转不变性的描述子,使其能够在不同的图像中进行特征匹配。此外,SIFT 的思想也启发了许多后续算法的诞生,例如 SURF(Speeded-Up Robust Features)和 ORB(Oriented FAST and Rotated BRIEF),进一步推动了特征提取技术的发展。DoG 的本质是不同尺度高斯模糊图像的差分,其优点在于计算效率高,同时能够有效检测图像的显著特征点。
2025-01-12 21:44:07
914
原创 GPU与CPU:架构对比与技术应用解析
GPU以其强大的并行计算能力,在深度学习、图像处理和科学计算等领域迅速崛起,而CPU则在通用计算任务中保持其核心地位。CPU(Central Processing Unit,中央处理单元)是计算机系统的核心组件,负责执行程序中的所有指令,并控制其他硬件设备的运行。CPU的设计目标是通用性和灵活性,能够处理各种复杂的计算任务和控制任务。在多核CPU和多GPU协同工作的架构中,优化任务分配和资源使用是性能调优的关键。CPU擅长处理复杂的、具有依赖性的串行任务,这是由其架构和设计目标决定的。
2025-01-12 19:24:06
1012
原创 Spark vs Flink分布式数据处理框架的全面对比与应用场景解析
分布式数据处理框架应运而生,它通过将数据分片分布到多台服务器上并行处理,提高了任务的处理速度和效率。Apache Flink 的生态系统相对更专注于流处理任务,同时逐渐扩展到批处理和机器学习领域。目前,分布式数据处理框架被广泛应用于大数据分析、机器学习、实时监控等领域,成为数据驱动型企业的核心技术工具。:Spark 的模块化设计与广泛的语言支持相结合,使其能够覆盖从批处理到机器学习的多种场景。:Flink 的工具更专注于流处理和实时任务,其复杂事件处理模块和状态管理机制是显著优势。
2025-01-11 18:21:38
1579
1
原创 深入浅出 OpenResty
OpenResty 是一个基于 Nginx 的高性能 Web 平台,它集成了大量模块,并原生支持 Lua 脚本。这使得开发者能够以非常灵活的方式实现复杂的逻辑,而无需重新编译或扩展 Nginx 核心。
2025-01-11 18:08:20
1201
原创 MyBatis 性能优化
通过前文的分析和优化技巧,我们深入探讨了 MyBatis 多表关联和动态 SQL 的常见性能陷阱以及优化方法。在本节中,我们将回顾性能优化的关键点,并梳理在实际项目中应用这些优化时需要注意的事项。6.1 性能优化的关键点回顾SQL 的合理设计降低多表关联的复杂度,尽可能减少不必要的关联。将复杂的查询拆分为多个简单的查询步骤,在应用层进行数据整合。高效的分页处理使用LIMIT和OFFSET实现分页,避免一次性返回大数据量。在大数据场景中优先使用主键或游标分页以提高效率。索引优化。
2025-01-10 23:32:00
1084
原创 现代软件架构设计:14个质量属性的定义、权衡与最佳实践
可用性指系统在一定时间内正常运行的能力,通常以系统的正常运行时间(Uptime)来衡量。高可用性对用户体验至关重要,特别是在金融、医疗、在线服务等领域。可用性正常运行时间正常运行时间故障时间\text{可用性} = \frac{\text{正常运行时间}}{\text{正常运行时间} + \text{故障时间}}可用性正常运行时间故障时间正常运行时间定义:可靠性是指系统在特定时间内无故障运行的能力,通常通过**平均无故障时间(MTBF)和平均修复时间(MTTR)**衡量。
2025-01-08 21:49:26
1133
原创 深度解析 tanh tanh 激活函数
在众多激活函数中,双曲正切函数(Hyperbolic Tangent Function,简称 (\tanh))是一个经典的选择,特别是在早期的深度学习模型中。在浅层网络和特定任务中具有明显的优势,但在深层网络中,由于梯度消失问题,ReLU、Leaky ReLU 和 Swish 等激活函数表现更好。在 NLP 任务(如情感分析、翻译、文本生成)中,(\tanh) 是许多经典模型(如 RNN、GRU、LSTM)的核心组件,用于捕捉上下文关系和语义特征。选择合适的激活函数,需要根据任务特点和模型复杂度综合考虑。
2025-01-08 21:32:24
1245
原创 剖析 Claim-Check 模式:以小传大,赋能分布式系统与微服务
在当今分布式系统与微服务架构盛行的时代,服务间的消息传递与数据交换越来越频繁。消息体过大:直接通过消息队列或服务间接口发送大体量数据,可能造成带宽压力和消息堆积。系统性能瓶颈:数据的频繁存取与网络开销逐渐加大,使得系统响应延迟。维护和扩展困难:当业务需求不断变化,需要对消息结构进行频繁调整时,易导致各个微服务在数据接口上出现不一致。针对这些问题,Claim-Check 模式提供了一种“拆分大数据、轻装上阵”的思路,可以有效解决以上痛点。科普 Claim-Check 模式基本概念。
2025-01-07 13:51:24
1400
原创 B-tree 数据结构详解
9.1 优势高效的搜索性能:B-tree 的搜索、插入、删除操作均为OlognOlogn)),且性能稳定,无退化情况(如二叉搜索树的链表退化)。B-tree 的多路性和较低的树高度减少了磁盘 I/O 次数,是数据库和文件系统的理想选择。B-tree 始终保持平衡,所有叶节点的深度相同,确保了操作的时间复杂度与数据量的对数关系。B-tree 的有序性使其天然支持范围查询和排序操作,特别是在 B+ Tree 变种中,范围查询通过叶节点链表实现效率更高。
2025-01-07 09:38:20
811
原创 深入解析汇聚层
以图像分类为例,如果模型需要判断一张图片是否有猫,汇聚层的作用是提取“猫耳”、“猫脸”、“猫眼”等关键信息,同时忽略背景的无关细节,如天空或草地的颜色。汇聚层的灵活性使得它在不同领域的任务中都能发挥重要作用,从图像的显著特征提取到文本和语音的全局特征表示,都离不开这一高效的操作模块。通过汇聚层的设计,模型能够在降维的同时保留最重要的信息,不仅提高了计算效率,还增强了模型在实际应用中的稳定性和鲁棒性。动态池化是一种可变的汇聚方法,窗口大小或步幅会根据输入特征图的尺寸动态调整,以确保输出特征图的大小固定。
2025-01-06 13:03:24
954
原创 解析残差连接:理论、实践与未来发展方向
残差连接(Residual Connection),又称为跳跃连接(Skip Connection),是深度神经网络中的一种创新性设计。它通过在网络中加入一条“跳跃路径”使得输入信息能够绕过一些网络层,直接传递到网络的更深层。这样,网络的输出不仅包括通过常规层变换后的结果,还包括输入数据本身的一部分。残差连接的核心思想是通过引入跳跃连接,使得网络能够有效地传递信息,尤其是深层网络中信息不易传递时,它能够减轻梯度消失问题,提高训练的效率。
2025-01-04 12:28:36
1402
原创 深入解析:如何计算不同类型数据的 Token 数量
在现代人工智能领域,Token 是数据进入模型的最小单位,无论是文本、音频、视频还是图片,都会被转化为 Token,以供模型处理。在这一过程中,理解 Token 的计算方式显得尤为重要,因为 Token 数量直接影响模型性能、训练时间和资源消耗。本文将从文本、音频、视频、图片四种数据类型出发,详细解析它们的 Token 数量计算方法,并讨论其公式、影响因素、优化策略,以及在实际应用中的注意事项。
2025-01-04 11:51:31
1089
原创 解构 KAG 和 RAG
特征KAGRAG数据依赖结构化数据(知识图谱、领域特定数据库)非结构化数据(文档、网页、文章等)知识更新机制静态知识库更新动态实时检索生成内容的可控性高度可控灵活但较难控制应用场景适配性知识密集型、专业领域(如医学、法律、技术支持)开放域、实时变化的场景(如新闻、客服、问答)在本篇博客中,我们深入探讨了KAG(Knowledge Augmented Generation)和RAG。
2025-01-04 10:57:39
688
原创 解密 RIG如何提升 AI 生成效果的效率与精准度
是一种结合了检索和生成的模型架构,广泛应用于自然语言处理(NLP)任务中。其核心思想是在生成回答的过程中,不仅依赖于训练数据,还能够检索外部信息源(如文档、网页、数据库等)来增强生成内容的准确性和丰富性。通过将检索模块与生成模型(如 GPT 类的生成器)结合,RAG 能够提供更加贴近实际问题的答案。信息检索:对于给定的输入查询,RAG 模型会先从外部文档库或知识库中检索相关的信息片段。生成回答。
2025-01-03 14:20:29
793
原创 Spring Boot 3 新特性 @RSocketExchange:轻松实现实时消息推送的全方位指南
基础概念与简介是 Spring Boot 3 中新增的注解,用于简化基于 RSocket 协议的服务端与客户端通信的编程模型。它通过注解驱动的方式,使开发者能够更高效地定义和使用 RSocket 的功能,类似于 Spring MVC 中的或。将 RSocket 请求与方法映射关联起来。适用于 RSocket 的请求-响应、请求-流、双向通信等模式。减少样板代码,提升开发效率。
2025-01-02 14:43:00
1146
原创 GraphRAG 与 LightRAG 技术全解
2.1 GraphRAG 的基本概念GraphRAG(Graph-based Retrieval-Augmented Generation)是一种结合知识图谱(Knowledge Graph)和检索增强生成技术的框架。核心特点利用图结构表达知识节点及其关系,增强上下文关联性。将结构化知识(如知识图谱)与非结构化知识(如文档、网页)整合到生成任务中。关键思想通过知识检索获取相关信息后,利用图的连接性来扩展语义信息,并最终生成与上下文高度相关的答案。目标解决复杂推理任务。
2025-01-02 09:40:00
1549
axure web元件库.zip
2024-05-17
Wav2Vec2模型文件
2024-02-29
Resnet152模型文件基于2048维度的向量
2024-02-28
arcface模型文件
2024-02-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅