点乘和叉乘

本文介绍了向量的内积(点乘)和外积(叉乘)的概念。内积的结果是一个标量,计算方式是对应元素相乘后求和,用于衡量两个向量的相似度和角度。外积则产生一个与原向量平面垂直的向量,长度由两向量的模和夹角的正弦值决定。在外积的几何意义中,它所指的向量是两个向量所在平面的法向量。这些概念在3D图像学和几何计算中有着广泛应用。
摘要由CSDN通过智能技术生成

向量的内积(点乘)

得到的结果是一个标量(实数)

定义

概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b:

a和b的点积公式为:

这里要求一维向量a和向量b的行列数相同。注意:点乘的结果是一个标量(数量而不是向量)

定义:两个向量ab的内积为 a·b = |a||b|cos∠(a, b),特别地,0·a =a·0 = 0;若ab是非零向量,则ab****正交的充要条件是a·b = 0。


向量的外积(叉乘)

得到的结果是一个向量

定义

概括地说,两个向量的外积,又叫叉乘、叉积向量积,其运算结果是一个向量而不是一个标量。并且两个向量的外积与这两个向量组成的坐标平面垂直。

定义:向量ab的外积a×b是一个向量,其长度等于|a×b| = |a||b|sin∠(a,b),其方向正交于ab。并且,(a,b,a×b)构成右手系。
特别地,0×a = a×0 = 0.此外,对任意向量aa×a=0

对于向量a和向量b:

a和b的外积公式为:

其中:

根据i、j、k间关系,有:

向量外积的几何意义

在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面

在3D图像学中,外积的概念非常有用,可以通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马鹏森

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值