机器学习——线性回归基础

本文介绍了线性回归的基本概念,包括其在数据分析中的作用,如何使用sklearn库的LinearRegressionAPI进行模型训练,以及代码示例。步骤涵盖了数据获取、预处理、特征工程、模型训练和评估。

什么是线性回归

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

线性回归API

C:\Users\Administrator>pip install scikit-learn
sklearn.linear_model.LinearRegression()
LinearRegression.coef_:回归系数

步骤

1.获取数据集
2.数据基本处理
3.特征工程
4.机器学习
5.模型评估

代码实现简单线性预测

from sklearn.linear_model import  LinearRegression

#定义数据集
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]

#机器学习训练模型

#实例化API
estimate =  LinearRegression()

# fit方法训练
estimate.fit(x,y)

#coef_ 返回一个系数结果
coef = estimate.coef_
#打印系数
print(coef)

#预测数值
predict = estimate.predict([[90,62]]) #注意预测值必须也是二维数组
#打印预测值
print(predict)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值