什么是线性回归
线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
线性回归API
C:\Users\Administrator>pip install scikit-learn
sklearn.linear_model.LinearRegression()
LinearRegression.coef_:回归系数
步骤
1.获取数据集
2.数据基本处理
3.特征工程
4.机器学习
5.模型评估
代码实现简单线性预测
from sklearn.linear_model import LinearRegression
#定义数据集
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
#机器学习训练模型
#实例化API
estimate = LinearRegression()
# fit方法训练
estimate.fit(x,y)
#coef_ 返回一个系数结果
coef = estimate.coef_
#打印系数
print(coef)
#预测数值
predict = estimate.predict([[90,62]]) #注意预测值必须也是二维数组
#打印预测值
print(predict)
本文介绍了线性回归的基本概念,包括其在数据分析中的作用,如何使用sklearn库的LinearRegressionAPI进行模型训练,以及代码示例。步骤涵盖了数据获取、预处理、特征工程、模型训练和评估。
1218

被折叠的 条评论
为什么被折叠?



