SAR ADC的量化误差

理想ADC对信号进行数字化时,最大误差为±1/2LSB,如下图的一个理想N位ADC,对于任何横跨数个LSB的交流信号,其量化误差可以通过一个峰峰值幅度为q (一个LSB的权重)的非相关锯齿波形来近似计算。对该近似法还可以从另一个角度来看待,即实际量化误差发生在±1/2q范围内任意一点的概率相等。虽然这种分析不是百分之百精确,但对大多数应用是足够准确的。

在这里插入图片描述

锯齿误差的计算公式如下:e(t) = st, –q/2s < t < +q/2s。
在这里插入图片描述

e(t)的均方值可以表示为:
在这里插入图片描述

进行简单的积分和简化可得:
在这里插入图片描述

另外,锯齿误差波形产生的谐波远远超过DC至f s /2的奈奎斯特带宽,然而,所有这些高阶谐波必须折回(混叠)到奈奎斯特带宽并相加,产生q/√12的均方根噪声。

量化噪声近似于高斯分布,几乎均匀地分布于从DC至fs /2的奈奎斯特带宽。这里假设量化噪声与输入信号不相关。在某些条件下,当采样时钟和信号通过谐波相关时,量化噪声将与输入信号相关,能量集中在信号的谐波中,但均方根值仍然约为q/√12。理论信噪比现在可以通过一个满量程输入正弦波来计算:

### SAR ADC 中冗余位对量化精度的影响 在逐次逼近型模数转换器 (SAR ADC) 设计中,引入冗余位的主要目的是为了提高系统的容错能力和线性度,从而间接提升整体的量化精度。具体来说: #### 容错能力增强 通过增加冗余位,在某些情况下即使存在轻微的设计误差或制造缺陷,也可以确保最终输出结果仍然保持较高的准确性。这是因为额外的比特提供了更多的调整空间来补偿这些不确定性因素[^1]。 #### 提升线性度 当使用带有冗余编码机制时,可以在一定程度上缓解由于电容器件本身特性差异所带来的非理想效应(如电容失配),进而改善整个ADC的线性表现。这种改进对于减少差分非线性和积分非线性的负面影响至关重要,有助于获得更接近理想的传输函数曲线[^2]。 #### 减少噪声敏感性 适当数量的冗余位还可以帮助减轻外界干扰以及内部热噪声等因素给测量带来的不利影响。这主要是因为增加了数据宽度之后,相对较小幅度的变化不会轻易改变高位数值,使得系统更加稳健可靠[^3]。 综上所述,虽然加入冗余会略微牺牲一些速度和资源利用率,但从长远来看,它确实能够在很大程度上优化SAR ADC的整体性能特别是其量化精度方面起到积极作用。 ```python def calculate_redundancy_effect(redundant_bits, original_precision): """ 计算冗余位对量化精度的影响 参数: redundant_bits -- 冗余位的数量 original_precision -- 初始无冗余情况下的量化精度 返回值: improved_precision -- 加入冗余后的预期量化精度增益百分比 """ # 这里假设每增加一位冗余可带来约0.5%~1%之间的精度提升 improvement_rate = 0.75 * redundant_bits / 100 improved_precision = original_precision + original_precision * improvement_rate return round(improved_precision, 4) # 示例调用 print(f"初始量化精度为98%,加入两个冗余位后的新精度约为{calculate_redundancy_effect(2, 98)}%") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芯辰则吉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值