理想ADC对信号进行数字化时,最大误差为±1/2LSB,如下图的一个理想N位ADC,对于任何横跨数个LSB的交流信号,其量化误差可以通过一个峰峰值幅度为q (一个LSB的权重)的非相关锯齿波形来近似计算。对该近似法还可以从另一个角度来看待,即实际量化误差发生在±1/2q范围内任意一点的概率相等。虽然这种分析不是百分之百精确,但对大多数应用是足够准确的。
锯齿误差的计算公式如下:e(t) = st, –q/2s < t < +q/2s。
e(t)的均方值可以表示为:
进行简单的积分和简化可得:
另外,锯齿误差波形产生的谐波远远超过DC至f s /2的奈奎斯特带宽,然而,所有这些高阶谐波必须折回(混叠)到奈奎斯特带宽并相加,产生q/√12的均方根噪声。
量化噪声近似于高斯分布,几乎均匀地分布于从DC至fs /2的奈奎斯特带宽。这里假设量化噪声与输入信号不相关。在某些条件下,当采样时钟和信号通过谐波相关时,量化噪声将与输入信号相关,能量集中在信号的谐波中,但均方根值仍然约为q/√12。理论信噪比现在可以通过一个满量程输入正弦波来计算: