大模型不仅仅是基础技术的差距,还涉及知识工程的差距。什么是知识?有用的数据就是知识。数据的数量多并不意味着其价值高,关键在于数据的质量。训练大模型时,并不是数据越多越好,很多低质量或垃圾数据会使得大模型变得“愚蠢”。高质量的数据来源,如高水平的学术期刊、论文、课本和书籍,才是形成知识的主力。越是难以阅读和理解的内容,越能提供丰富的知识。
没有高质量的知识,就无法有效地训练大模型,也无法进行知识对齐。在单位内部,知识对齐是非常重要的,它确保大模型不会无中生有,不会杜撰或产生幻觉。因此,知识管理至关重要。
一、知识工程
知识工程是一门融合了人工智能、计算机科学、认知科学、语言学等多学科知识的综合性学科,旨在研究如何高效地获取、表示、组织和利用知识,从而构建出具有智能行为的系统。从本质上来说,知识工程就是要解决“让机器理解和运用人类知识”这一关键问题,它是连接人类智慧与机器智能的桥梁。
1.知识获取
知识获取是知识工程的首要环节,涉及从各种来源收集知识,包括专家经验、文献资料、数据记录等。在大模型训练场景中,收集高质量的学术论文、专业书籍内容等就是知识获取的过程。由于这些知识源往往具有不同的形式和结构,知识工程师需要通过访谈、观察、数据挖掘等方法,将其转化为机器能够处理的形式。
2.知识表示
知识表示是知识工程的核心任务之一,其目的是将获取到的知识以合适的形式存储在计算机中,便于机器进行处理和推理。常见的知识表示方法有语义网络、框架表示、谓词逻辑等。在大模型里,知识通常以向量的形式嵌入到模型参数中,使模型能够理解和处理语义信息。例如,将自然语言文本转化为词向量,让模型能够捕捉词语之间的语义关联。
3.知识组织
知识组织侧重于对已表示的知识进行结构化和系统化整理,构建出层次清晰、逻辑连贯的知识体系。就像在构建企业内部知识图谱时,将不同部门、不同业务流程产生的知识进行关联整合,形成一个有机整体,方便大模型进行知识检索和推理。这样一来,当大模型面对具体问题时,能够快速定位到相关知识,提高问题解决的效率和准确性。
4.知识利用
知识利用是知识工程的最终目标,即让机器运用所获取和组织的知识,实现智能决策、问题求解、语言理解等功能。在大模型应用中,通过对大量知识的学习和理解,模型可以生成符合逻辑的文本、提供专业的咨询建议、辅助科学研究等。例如,在医疗领域,基于知识工程构建的大模型可以依据患者症状、病历数据以及医学知识,辅助医生进行疾病诊断和治疗方案制定;在法律领域,大模型能通过分析法律条文、过往案例等知识,为用户提供法律咨询和法律文书撰写建议。
知识工程通过对知识全生命周期的管理和优化,为大模型等人工智能系统提供了坚实的知识基础,极大地提升了系统的智能水平和应用价值。
二、如何从大数据中提炼知识
从大数据到信息、再到知识、洞察和智慧,这是一个层层提炼的过程。大数据如何从中提炼知识,这是知识管理的一个挑战。大模型能够将看似无用的数据变成有价值的知识。传统的大数据偏重于数值计算型的数据,因此传统的模型主要是数学模型。然而,许多单位拥有大量的聊天记录、邮件记录等非结构化数据,这些数据在传统方法中难以被充分利用。
1.数据预处理
数据预处理是提炼知识的第一步,也是至关重要的基础工作。原始大数据中常常包含大量的噪声数据、重复数据以及缺失值,这些问题会干扰知识的提取。数据清洗通过识别和处理错误、重复的数据记录,填补缺失值,使数据变得干净、完整。例如,在企业销售数据中,可能存在因录入错误产生的异常数值,通过数据清洗可以修正这些错误,确保后续分析的准确性。同时,数据集成将来自不同数据源的数据进行合并,如将企业的客户管理系统数据与销售系统数据整合,以便从更全面的角度进行分析;数据转换则是将数据统一格式、标准化数值范围,让数据更适合后续处理。
2.数据分析
在数据预处理完成后,需要运用多种分析技术来挖掘数据背后的知识。传统的统计分析方法可以帮助我们发现数据的基本特征和规律,如计算平均值、中位数、标准差等统计量,了解数据的集中趋势和离散程度,通过绘制图表直观呈现数据分布。在分析电商平台的销售数据时,统计分析能够得出不同时间段、不同商品类别的销售趋势,为商家制定营销策略提供参考。
3.机器学习算法
机器学习算法在大数据知识提炼中发挥着强大的作用。分类算法,如决策树、支持向量机等,可以对数据进行分类,例如将客户按照消费行为分为高价值客户、普通客户和潜在流失客户,帮助企业精准营销;聚类算法则能将相似的数据对象归为一类,在用户画像构建中,根据用户的年龄、性别、消费偏好等特征进行聚类,从而深入了解不同群体的需求。此外,回归分析可以预测数据的趋势,在股票市场预测、房价走势分析等场景中广泛应用。
4.大模型的应用
大模型的出现为大数据知识提炼带来了新的突破。其强大的自然语言处理能力,能够对大量非结构化文本数据进行语义理解和分析。以新闻资讯数据为例,大模型可以自动提取新闻事件的关键信息,如事件发生的时间、地点、人物和主要内容,甚至分析事件之间的关联和影响,将这些信息转化为有价值的知识。在处理企业内部的文档数据时,大模型能够快速识别文档中的专业术语、核心观点,自动生成摘要和知识图谱,帮助企业员工快速获取知识,提高工作效率。
5.知识发现和模式识别
知识发现和模式识别是提炼知识的核心目标。通过对处理后的数据进行深入挖掘,寻找其中隐藏的规律、关系和模式。例如,在医疗大数据中,通过分析大量患者的病历数据、检查结果和治疗方案,发现某些疾病的发病规律、不同治疗方法的效果差异等知识,为临床诊断和治疗提供科学依据。在交通领域,分析车辆的行驶轨迹、交通流量数据,可以发现交通拥堵的原因和规律,进而提出优化交通管理的方案。
6.知识验证和评估
最后,提炼出的知识需要进行验证和评估,确保其准确性和可靠性。通过将知识应用到实际场景中,观察其是否能够有效解决问题、产生预期的效果。如果知识在实践中表现不佳,需要重新审视数据处理和分析的过程,调整方法和参数,不断优化知识提炼的过程。
三、单位内部数据形成知识
1.非结构化数据的深度挖掘
单位内部存在大量如会议记录、邮件、员工经验分享等非结构化数据,传统方法难以充分利用这些数据。大模型凭借其强大的自然语言处理能力,能够对这些非结构化数据进行深度语义理解。例如,在分析会议记录时,大模型可以自动提取会议讨论的关键议题、决策结果以及待办事项,并生成结构化的摘要;对于员工撰写的项目经验文档,大模型能够识别其中的专业知识、操作技巧和问题解决方案,将其转化为可复用的知识单元,极大地丰富了单位的知识储备。
2.知识的自动生成与关联
大模型不仅能提取现有数据中的知识,还能基于已有知识自动生成新的内容。在培训资料制作方面,大模型可以根据企业的业务需求和员工岗位特点,自动生成针对性的培训课程大纲、学习资料和练习题。同时,大模型能够分析知识之间的内在联系,构建知识图谱。比如,将企业的产品知识、技术规范、市场策略等知识进行关联,形成一个有机的知识网络,方便员工快速查找相关知识,促进知识的融会贯通。
3.垂直场景的应用
在垂直场景中,大模型能充分利用单位专有知识。政府机构公文库、企业各类管理系统产生的大量数据,在大模型的处理下,可快速定位、总结关键信息,形成知识。通过将垂直场景与专有知识相结合,形成知识闭环,持续优化机构专用大模型,为单位发展提供强大的知识驱动力。