机器学习算法分类

机器学习算法分类

监督学习(特征值+目标值)

  • 输入数据有特征有标签,即有标准答案
  • 分类
    • k-近邻算法、
    • 贝叶斯分类、
    • 决策树与随机森林、
    • 逻辑回归、
    • 神经网络
  • 回归
    • 线性回归
    • 岭回归
  • 标注
    • 隐马尔可夫模型

无监督学习(特征值)

  • 输入数据有特征无标签,即无标准答案
  • 聚类
    • k-means

数据要么是离散型要么是连续型

分类

  • 处理目标值是离散型数据
  • 概念:是监督学习的一个核心问题,在监督学习中,当输出变量取有限个离散值时,预测问题变成分类问题。最基础的便是二分类问题,即判断是非,从两个类别中选择一个作为预测结果。

回归

  • 处理目标值是连续型数据
  • 概念:回归时监督学习的另一种重要问题。回归用于预测输入变量和输出变量之间的关系,输出是连续型的值。
发布了13 篇原创文章 · 获赞 1 · 访问量 523
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览