【B端产品经理】---02重新认识B端产品与B端产品经理 02重新认识B端产品与B端产品经理前言核心问题B端 VS C端B端产品定位和类型B端产品经理的常见角色前言本人近期在学习B端产品的一些基本方法和知识结构,学习资源:起点学院B端产品经理课程,希望同行多多交流~~核心问题1)什么是B端产品,准确定义?2)B端产品必须具备的能力?3)工作思路:业务闭环和落地实施4)成长路径:从思辨执行到引领业务B端 VS C端B端产品定位和类型帮助企业完成商业目标B端产品经理的常见角色...
【AI产品经理】----第一,认识AI和AI产品经理 行业和布局一、基础层:算力,数据储存1)数据储存和运算能力2)弹性计算3)迁移、通信4)数据库MYSQL要解决的核心问题:数据储存、运算分配、云服务管理用户需求:1)数据 2)运算二、技术层:算法输出CV:1)机器学习2)深度学习3)神经网络4)滤波算法设备-----》图像处理-----》云端2终端----》数据库匹配----》返回结果(通过/不通过)语音识别:1)语音识别2)语义理解人发起语音-----》语音识别-----》语义理解----》数据库匹配----》
【LR】模型测试 数据集以及源码在这里获取:https://github.com/beyondguo/LeaningDeepLearningimport numpy as npimport h5py #一个h5py文件是 “dataset” 和 “group” 二合一的容器。def load_dataset(): train_dataset=h5py.File('/Users/momozi1996/Downloads/LeaningDeepLearning-master/LR/datasets/train_
【临床预测模型】----单因素分析 【临床预测模型】------单因素分析1、结局变量的处理:1)结局变量:预测模型要预测的目标2)二分类变量&连续变量3)二分类变量&时间-事件变量2、缺失值:3、连续变量?分类变量:4、变量转换:1、结局变量的处理:1)结局变量:预测模型要预测的目标1⃣️诊断模型|结局变量:患病状态(是否患病)2⃣️预测模型|结局变量:是否发生时间/何时发生事件➡️ 对于回归模型,结局变量即为因变量(Y)1⃣️连续变量:血压,出生体重2⃣️二分类变量:是否患病,是否死亡3⃣️时间-事件变量
【分享】---医院会为怎样的AI影像产品买单??(来自数坤科技) 作为7年放射科医生,医疗行业任职14年,他对医疗行业有着深刻的认识。他认为:医疗行业的实际用户有两类:一类是真正的用户(决策者),一类是使用上的用户。一个产品能不能有生命力, 首先要符合既能满足使用用户的需求,还要满足决策用户的要求。人工智能AI的辅助在于:场景自动化+报告结构化➡️标准化影像发展目前只是1.0阶段,2.0时代的影像AI,首先,应该能为临床数据诊断产生新的数据,这些数据可对原疾病进行高于形态的判别,在风险预测、预防,乃至最后的疗效评估等环节,均可发挥价值;其次,可以实现实现多任务处理,
【Rcode】生存分析: KM & COX回归& 随机森林& nomogram 本文使用了R——survival包下的lung数据进行方法测试:1)KM2) Cox回归:多因素3)随机森林因子(根据cox回归结果)4)nomogram( 根据cox回归结果,建立了中位生存时间,1年5年生存率的概率计算)-------------------????????♀️本文只有干货,非常干!????-----------------------------一、数据加载#生存分析library("survival")library("survminer")data("
【临床预测模型】----三个维度筛选预测因子 【临床预测模型】----三个维度筛选预测因子1、医学文献1)医学指南:(最佳)2)系统综述/综述3)预测模型/预测因子2、统计方法1)单因素2)多因素3、应用场景1)面向大众:推广、简单2)面向医学科研人员/医生:精准4、好的预测因子特点(评价)三个维度:文献+统计+场景1、医学文献 建模之前,一定到复习足够的医学文献。1)医学指南:(最佳)对当前的疾病的最新文献的评价和总结,高危因素、预测因子,文献支持。2)系统综述/综述 他人的总结,临床+影像预测因子;3)预测模型/预测因子
【临床预测模型】----选择合适的统计模型 【临床预测模型】----选择合适的统计模型常用4种统计模型1)logistics 回归: |分类变量2)cox回归: |生存资料3)poisson /负二项回归: |计数资料4)线性回归: |回归连续变量根据不同的结局事件,建立不同的回归模型。1、预测事件|logistic 回归 短期随访&无事件-时间记录1)结局事件:①是否患某疾病;②是
【临床预测模型】----选择合适的研究数据 【临床预测模型】----选择合适的研究数据选择数据通常面临许多问题:①②③④⑤⑥⑦⑧⑨⑩1、现成数据和研究数据1)现有数据:①优势:时间、精力、人力成本较低②劣势:A. 选择偏倚不可控;B. 数据质量(数据完整性、有效性、可靠性)③如何获得:A. 既往研究项目的数据B.医院的电子病例C.公开的研究数据公开数据集【注意】1)研究设计评估2)数据申请和使用流程3)数据质量评估和控制2)研究数据:①优势:A. 预测因子B. 选择偏倚可控(纳排标准)②劣势:时间、经济、人力
【临床预测模型】----10步建立完整的临床机器学习预测模型,5分钟搞定!! 【临床预测模型】----10步建立预测模型好多小伙伴在首次构建一个临床预测模型构建时,一头雾水找不着北????为了解决这一问题,小编思索良久,决定彻夜归纳,5min快速概括,告诉各位头大的小朋友,每一步应该怎么做~????????满满只放干货,划重点!!研究思路 ????????准备工作 ➡️ 统计分析 ➡️ 成果展示!!大部分的研究,取决于我们有什么样的现有数据!!so,数据是一切的源头,巧妇难为无米之炊。1、准备工作:1)确立研究问题2)选择数据来源3)数据的预处理2、统计
【临床预测模型】----诊断模型or 预后模型 【临床预测模型】第一部分: 诊断模型or 预后模型一,诊断模型(Diagnostic Model)1、定义:用来预测个体患者患有某种疾病的概率;1)通常应用于:特定群体,表现出某种症状的患者;2)结局变量:患者当前状态(是否患病)2、诊断模型是诊断试验准确性研究的延伸;概率思维:诊断结果不再是阴阳,而是当前患有某疾病的可能性。预测因子和结局指标,应该“同时间”测量。3、诊断论文的特点:1)标题:diagnostic,diagnostic model;疾病名称;2)摘要/关键字:d
【临床研究】---多元回归分析中的变量筛选问题 【临床研究】---多元回归分析中的变量筛选问题方法选择的思考路径:1、变量筛选方法的归纳1)变量筛选的一般流程:①逐个变量:单因素回归分析②分析P值:依据样本量大小情况调整P值选择范围③纳入规则:将单因素回归分析中p值<?(②中规则)的自变量纳入最终回归方程。2)常用统计学软件:2、变量筛选遵循的基本原则1)足够的统计学效能:2)依据临床研究报告的以往经验筛选:3)结合临床知识筛选:3、变量筛选的基本共识1)结合临床专业知识:2)根据单因素分析结果筛选变量:3)根据混杂因素“Z”对试验因素或暴露因素“
【影像组学】CT数据与MRI数据 【影像组学】CT数据与MRI数据一、CT :计算机断层成像技术1、工作流程根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。2、成像基本原理CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若
【医学统计学—第四版-孙/人民卫生出版社】——绪论:01 统计学的几个基本概念 第一章:绪论 一、 统计学的几个基本概念总体与样本变量与资料统计分类方法的选用,与资料类型密切联系。误差频率与概率二、 医学统计工作的基本步骤1、设计2、收集资料3、整理资料4、分析资料三、 统计学发展史一、 统计学的几个基本概念总体与样本个体(individual):观察单位(observed unit),统计研究的基本单位。总体(population):同质的所有观察单位的某种观察值的集合。有限总体(finite population):总体中明确规定了空间、时间、人群范围的有限个观察
【影像组学】影像组学--基本步骤(概述) 【影像组学】影像组学–基本步骤(概述)所谓影像组学,是对医疗影像进行定量描述和定量分析的一种研究方法,将视觉影像信息转化为深层次的特征来进行量化研究。放射组学(Radiomics):从医学影像图像中挖掘高通量的定量影像特征,使用统计学方法筛选出能够提供有用的诊断、预测或预后信息等最有价值的影像特征,可用于疾病的定性、疗效评估和预后预测等研究。一、基本处理流程1、2、3、4、5、...
AI慕课--人脸识别课程 人脸识别1 常用生物特征比较:人脸识别的普遍性、可采集性、可接受程度高(方便);但是独特性、性能、防欺骗性偏低(通过算法改进);因此,只要大幅度提高人脸识别算法的性能,可使得人脸识别得到最大程度的大范围使用。–人脸识别的优势...
vs opencv 使用时的问题 使用时的问题1 在进行彩色联合标定时,调用的#include “cvut.h” 中发现cvutUtil.h头文件中的void do_morphing(Image& RightImage, Image& LeftImage, CvMatrix3* F_Matrix)会报错,主要在CvMatrix3。解决方法:将 CvMatrix3* F_Matrix直接改成 float F_...
双目相机-投影仪彩色联合标定实验的问题 双目相机-投影仪彩色联合标定实验的问题1 颜色通道的选择:投影棋盘格:红黑棋盘格;两种投影方案:第一,投影光:蓝光;打印棋盘格:黄白棋盘格第二,投影光:绿光;打印棋盘格:红白棋盘格方案一采集的图片过曝程度小于方案二,由于投影仪本身亮度值较高。...