NumerSense: Probing Numerical Commonsense Knowledge of Pre-trained Language Models
论文目的调查研究了预训练模型是否可以得出数字常识知识,若可以那么可以理解到什么程度,以及该过程的鲁棒性,同时构建了数字常识知识数据集NUMERSENSENUMERSENSE构建过程从OMCS抽取含{“no”, “zero”, “one”, “two”, …, “ten” }其中任意一个单词的句子。 为了降低噪音,作者手工和务实地修改了这些句子,并由不同的研究生进行了两轮审查,作者只保留了所有注释者接受的陈述。为了检测模型的鲁棒性, 我们还在我们的数据集添加了对抗性的例子,即在每个检测中涉及数值推理




