第G1周:生成对抗网络(GAN)入门 import os# 创建文件夹# 超参数配置b1 = 0.5b2 = 0.999n_cpu = 2# 图像的尺寸:(1, 28, 28),和图像的像素面积:(784)# 设置cuda:(cuda:0)'''定义判别器 Discriminator将图片28x28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,最后接sigmoid激活函数得到一个0到1之间的概率进行二分类'''
第N9周:Transformer实战-单词预测 生成位置编码的位置张量# 计算位置编码的除数项# 创建位置编码张量# 使用正弦函数计算位置编码中的奇数维度部分# 使用余弦函数计算位置编码中的偶数维度部分"""Arguments:x: Tensor, 形状为 [seq_len, batch_size, embedding_dim]"""# 将位置编码添加到输入张量# 应用 dropoutself,# 定义编码器层# 定义编码器,pytorch将Transformer编码器进行了打包# 初始化权重"""
深度学习训练营-第J9周:Inception v3算法实战与解析 Inception v3是一种优秀的深度学习模型,用于图像分类和识别任务。有多尺度卷积结构和全局平均池化层,可以捕捉不同尺度的信息。利用预训练模型、迁移学习、数据增强和正则化技巧,可以提高模型性能和鲁棒性。总之,Inception v3是一个很强大的算法工具软件。
365天深度学习训练营-第P1周:实现mnist手写数字识别 MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。(下载后需解压)。我们一般会采用这行代码直接调用,这样就比较简单MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28在不同的版本中可能有一些属性没有,学会灵活使用。