向量组的线性相关性

目录

 

一、行向量和列向量

二、矩阵和向量

3.向量组等价、系数矩阵

4、向量组的线性相关性


一、行向量和列向量

n维列向量和n维行向量,分别是竖着的和横着的。

aT= \bigl(\begin{smallmatrix} a1 & a2 & a3 &... & ... & an \end{smallmatrix}\bigr)横着的是行向量;

a=\begin{pmatrix} \\ a1 \\ a2 \\ a3 \\ . \\ . \\an \end{pmatrix}是竖着的,是列向量;

还要注意一下表示法,通常带T的是行向量,不带T的是列向量。

 

二、矩阵和向量

我们知道的矩阵的分块法,我们可以按每列进行分块,那么我们就可以得到一个向量组,里面的元素是列向量。

如果我们对每行进行分块,那么我们就可以得到一个向量组,里面的元素是行向量。

三、向量组的线性组合

1.向量组A:a1,a2,......,an 对于任何一组实数k1,k2,......,kn表达式:k1 \underset{a}{\rightarrow}_{1}+k2\underset{a}{\rightarrow}_{2}+...+kn\underset{a}{\rightarrow}_{n}称为向量组A的线性组合,k1,k2,...kn也称为线性组合的系数。


2.若给定向量组A,和向量b,如果存在一组数使\begin{align*} \underset{b}{\rightarrow}&= k1 \underset{a}{\rightarrow}_{1}+k2\underset{a}{\rightarrow}_{2}+...+kn\underset{a}{\rightarrow}_{n} \end{align*},那么向量b则是向量组A 的线性组合,也称向量b能由向量组A线性表示。

将ki用xi替换也等价为:\begin{align*} x_{1}\underset{a}{\rightarrow}_{1}+x_{2}\underset{a}{\rightarrow}_{n}+...+x_{2}\underset{a}{\rightarrow}_{n} &= \underset{b}{\rightarrow} \end{align*}有解。若有解则有R(A)=R(A,b)。

=>定理:向量b能由向量组A线性表示的充要条件是:R(A)=R(A,b)


3.向量组等价、系数矩阵

向量组B能由向量组A线性表示:B中的每个向量都可以由A线性表示。

向量组B和向量组A等价:二者可以相互线性表示。

 

\begin{align*} C_{m\times n} &= A_{m\times l}B_{l\times n} \end{align*}

我们可以称:C的列向量组能由A的列向量组线性表示。B称这一表示的系数矩阵

或称:C的行向量组能由B的行向量组线性表示,A为这一表示的系数矩阵

笔:这一点可以结合前面的理解,行变换和列变换来理解,系数矩阵在左边时可以认为是对行进行线性变换,在右边时可以认为对列进行线性变换


=>定理:向量组B \begin{matrix} b1 &b2 &b3 &...&bn \end{matrix}能由向量组A: \begin{matrix} a1 &a2 &...&an \end{matrix}线性表示的充要条件是R(A)=R(A,B)。

笔:注意B,A是列向量组。所以系数矩阵应该在右边:AX=B,即有解,易得上面定理。

=>推论:借用上面定理调换AB位置可知A和B等价的充要条件:R(A)=R(A,B)=R(B)

笔:注意R(A,B)=R(B,A)即可


=>定理:设向量组B:\begin{matrix} b1 &b2 &b3 &...&bn \end{matrix}能由向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性表示,则R(B)\leqR(A)

笔:即AX=B有解时二者秩的关系,有解则有 R(A)=R(A,B),又知道R(B)\leqR(A,B)=R(A),所以推知。


 

4、向量组的线性相关性

上面介绍的是线性表示

下面介绍的是线性相关性

向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix},如果存在不全为零的数\begin{matrix} k1 &k2 &...&kn \end{matrix}使

\begin{align*} k1\underset{a1}{\rightarrow}+k2\underset{a2}{\rightarrow}+...+kn\underset{an}{\rightarrow} &= \underset{0}{\rightarrow} \end{align*}则称A是线性相关的,否则是线性无关的。

 

如果\begin{matrix} k1 &k2 &...&kn \end{matrix}不全为0那么势必有一个或多个向量\underset{ai}{\rightarrow}能由其他向量线性表示,

 

反之也能推导到A是线性相关的。


有了向量组的线性相关性后我们再看下方程组。

当方程组中某个方程是其余方程的线性组合时,那么经过逆过程此方程会被消去,此方程也就成为了多余的方程,此时称方程组是线性相关的;当方程组中没有多余的方程时,我们称为方程组线性无关(独立)。

二者结合起来:方程组AX=b线性相关时,即(A,b)的行向量组线性相关,因为(A,b)就代表了方程组。

 

=>定理:向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性相关的充要条件:R(A)<向量个数n; 向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性无关的充要条件:R(A)=向量个数n;

笔:如果将上面AX=b,b换为0,那么就成为AX=0。线性相关就变成了此方程组存在非零解,如果是0解相应的A就为线性无关。转换为非零解的问题,假定n个变量n个方程,如果R(A)<n,说明有方程被约掉,此时是有无限解的,也就是存在非零解。如果<n个方程,那么此时必有R(A)<n。同上,如果AX=0仅有零解,那么A是线性无关的,仅有零解说明了存在了唯一解,此时必有R(A)=n,n个方程n变量恰好有一组解。


 

①=>定理:向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性相关,则向量组B:\begin{matrix} a1 & a2 & ...&a_{n+1} \end{matrix}也线性相关;若向量组B:\begin{matrix} a1 & a2 & ...&a_{n+1} \end{matrix}线性无关, 向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性无关;

笔:向量组A线性相关:则R(A)<n, 所以R(B)\leqR(A)+1=n+1,所以B线性相关;向量组B向量无关R(B)=n+1,假若A线性相关那么R(A)<n,所以R(B)\leqR(A)+1<n+1,就会推知B 线性相关,所以知假设不成立,所以A线性无关。

 

②=>定理:m个n维向量组成的向量组B即n×m矩阵,如果n<m,那么一定线性相关。

笔:因为R(B)\leqmin{n,m}=n<m所以知,定线性相关。

③=>定理: 向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性无关,向量组B:\begin{matrix} a1 &a2&...&an&b \end{matrix}线性相关,则

向量b必能由A线性表示,且表示式唯一。

笔:向量组B:\begin{matrix} a1 &a2&...&an&b \end{matrix}线性相关,即R(B)<n+1。 向量组A:\begin{matrix} a1 &a2 &...&an \end{matrix}线性无关,所以R(A)=n。所以就可以推知n=R(A)\leqR(B)<n+1,所以R(B)=n。所以AX=b有唯一解。

注:之前我在此混淆了方程组和向量组的关系。向量组的线性相关性和方程组的线性相关性,方程组的线性相关性只是说明是否有多余的方程,并未透露解的问题,有可能方程组的方程个数很多。所以具体有无解或者是解的个数问题 需要判断R(A)=?R(A,B),且和n的关系。


向量组的秩

->就是最大线性无关向量组所含向量的个数

->向量组的任一向量都能由最大线性无关向量组线性表示

矩阵的秩和它的列向量组的秩、行向量组的秩相等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:书香水墨 设计师:CSDN官方博客 返回首页
评论 2

打赏作者

Tiqer

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值