大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。
本文主要介绍了Tensorflow 2.x(keras)源码详解之第五章:数据预处理,希望能对学习TensorFlow 2的同学有所帮助。
文章目录
1. 数据预处理流程
- 使用 Keras 预处理层,可以构建和导出真正的端到端模型:接受原始图像或原始结构化数据作为输入的模型;自行处理特征归一化或特征值索引。
- tf中可用的数据预处理层包括:
- 文本预处理:
tf.keras.layers.TextVectorization
:将原始字符串转换为可由Embedding
层或Dense
层读取的编码表示。
- 数值特征处理:
tf.keras.layers.Normalization
:执行输入特征的特征归一化。tf.keras.layers.Discreti
- 文本预处理: