
[NC|论文简读] UnitedNet: 用于多模式生物数据分析的可解释的多任务学习
目前的生物技术可以同时测量同一细胞的多种高维模态(如RNA、DNA可及性和蛋白质)。需要结合不同的分析任务(如多模态整合和跨模态分析)来全面了解这些数据,推断基因调控如何驱动生物多样性和功能。然而,目前的分析方法被设计为执行单一任务,只能提供多模式数据的部分情况。在这里,我们提出了UnitedNet,一个可解释的多任务深度神经网络,能够整合不同的任务来分析单细胞多模态数据。
科研杂文
生物网络文章
Network Embedding文章
机器学习
pytorch框架知识
python
lncRNA相关数据数据库
深度学习知识总结
SCI投稿
CSDN编写使用命令
软件安装 
