题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入 Copy
3
6
4
25
样例输出 Copy
25713864
17582463
36824175
代码:
//一定要用C++编译
#include<stdio.h>
#include<algorithm>
int countt=0;
bool hashtable[9]={false};
int P[9];
int Pstore[95][9];
int num;
int b[95];
void generateP(int index){
if(index==9){
countt++;
for(int i=1;i<=8;i++){
Pstore[countt][i]=P[i];
}
return;
}
for(int x=1;x<=8;x++){
if(hashtable[x]==false){
P[index]=x;
bool flag = true;
for(int pre=1;pre<index;pre++){
if(abs(index-pre)==abs(P[index]-P[pre])){
flag=false;
break;
}
}
if(flag==true){
hashtable[x]=true;
generateP(index+1);
hashtable[x]=false;
}
}
}
}
int main(){
generateP(1);
while(scanf("%d",&num)!=EOF){
for(int i=0;i<num;i++){
scanf("%d",&b[i]);
}
for(int i=0;i<num;i++){
for(int j=1;j<=8;j++){
printf("%d",Pstore[b[i]][j]);
}
printf("\n");
}
}
return 0;
}
本文介绍了一种使用C++编程语言解决经典的八皇后问题的方法。通过递归算法生成所有可能的解决方案,并根据特定规则对解决方案进行排序。文章提供的代码能够接受用户输入,返回指定序号的皇后串布局。
3793

被折叠的 条评论
为什么被折叠?



