1030 完美数列 (分数 25)【C++】

给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列。

现在给定参数 p 和一些正整数,请你从中选择尽可能多的数构成一个完美数列。

输入格式:

输入第一行给出两个正整数 N 和 p,其中 N(≤10 ^5)是输入的正整数的个数,p(≤10 ^9)是给定的参数。第二行给出 N 个正整数,每个数不超过 10 ^9 。

输出格式:

在一行中输出最多可以选择多少个数可以用它们组成一个完美数列。

输入样例:

10 8
2 3 20 4 5 1 6 7 8 9

输出样例:

8

代码:

这个代码是可以AC通过的。后面还有一个,需要高手来指导了。

#include<cstdio>
#include<algorithm>
using namespace std; 

bool cmp(long long a,long long b){
	return a<b;
}

int main(){
	int n,i,j;
	long long p; //必须是long long,否则测试点5通不过 
	if(scanf("%d%lld",&n,&p)){
		if(n<=0||p<=0){
			printf("n or p error!\n");
			return 0;
		}
	}
	long long a[n]; //必须是long long,否则测试点5通不过 
	for(i=0;i<n;i++){
		if(scanf("%lld",&a[i])){
			if(a[i]<=0){
				printf("This is not a positive integer!\n");
				return 0;	
			}
			
		}
	}
	sort(a,a+n,cmp);
	int coun=1;
	for(i=0;i<n;i++){
		for(j=i+coun;j<n;j++){
			if(a[j]<=a[i]*p){
				coun++;         //coun=j-i+1;也对 
			}
			else break;
		}
	}
	printf("%d\n",coun);	
	return 0;
}

这个代码得分22,测试点4通不过,一直找不到原因,好想哭,呜呜呜~~
这里,我没有用二重循环,我觉得这样逻辑更简单一点,就是肯定有哪个情况我没有考虑到。
请高手指点,万分感谢!
在这里插入图片描述

//得分22分,满分25分。不知道错在哪里。 
#include<cstdio>
#include<algorithm>

using namespace std; 

bool cmp(long long a,long long b){
	return a<b;
}

int main(){
	int n,i;
	long long p; //必须是long long,否则测试点5通不过 
	if(scanf("%d%lld",&n,&p)){
		if(n<0||p<0){
			printf("n or p error!\n");
			return 0;
		}
	}
	long long a[n]; //必须是long long,否则测试点5通不过 
	for(i=0;i<n;i++){
		if(scanf("%lld",&a[i])){
			if(a[i]<0){
				printf("This is not a positive integer!\n");
				return 0;	
			}
			
		}
	}
	sort(a,a+n,cmp);
	long long min=a[0],max=a[n-1];
	//printf("max=%d,min=%d",max,min);
	if(max<=min*p){
		printf("%d\n",n);
		return 0;
	}
	//尝试改变最小值,使 max<=min*p成立。
	int cmin_t=1; 
	for(i=0;i<n;i++){
		if(max<=a[i]*p){
			cmin_t=n-i;
			break;
		}
	}
	//尝试改变最大值,使 max<=min*p成立。
	int cmax_t=1; 
	for(i=n-1;i>=0;i--){
		if(a[i]<=min*p){
			cmax_t=i+1;
			break;
		}
	}
	if(cmin_t>=cmax_t) printf("%d\n",cmin_t);
	else printf("%d\n",cmax_t);
	return 0;
}

### 关于用C++实现斐波那契数列 #### 使用数组预处理的方法 为了高效地获取任意位置的斐波那契数值,可以预先计算并存储一系列的结果。下面展示了一种利用全局数组`a[]`来保存前10万个斐波那契数的方式,并考虑到整型溢出的风险,在每次累加时取模运算防止数据超出范围。 ```cpp #include<iostream> using namespace std; const int N = 100010; int a[N] = {0}; void prepare_fibonacci() { a[0] = 1, a[1] = 1; for (int i = 2; i < 100001; ++i) { a[i] = (a[i - 1] + a[i-2]) % 1000000; // 防止超过INT的最大值[^2] } } int main() { prepare_fibonacci(); int n; while (cin >> n) { cout << ((n >= 29)? "%06d": "%d") << endl, a[n]; } return 0; } ``` 这段程序首先定义了一个大小为N(即100010)的数组用于存放斐波那契序列中的各个项。函数`prepare_fibonacci()`负责初始化这个数组,其中初始条件设定了f(0)=f(1)=1。之后遍历剩余索引位,按照递推关系式逐步填充后续各项直至达到设定上限。最后在main函数里读入用户输入的目标序号n,并依据其是否大于等于特定阈值决定输出格式化方式,从而打印对应的斐波那契数值。 #### 动态规划的思想应用 上述方法体现了动态规划的核心理念——记忆化搜索或自底向上构建解空间表。对于斐波那契数列而言,就是通过记录下每一步中间结果的方式来避免不必要的重复计算,进而提高效率。这种方法不仅适用于此类简单的线性递增模式,还可以推广到更复杂的组合优化问题上,比如背包问题、最长公共子序列等问题中去[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值