根据维基百科的定义:
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成 N 个只包含 1 个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下 1 个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数 N (≤100);随后一行给出原始序列的 N 个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第 1 行中输出Insertion Sort表示插入排序、或Merge Sort表示归并排序;然后在第 2 行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行首尾不得有多余空格。
输入样例 1:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0
输出样例 1:
Insertion Sort
1 2 3 5 7 8 9 4 6 0
输入样例 2:
10
3 1 2 8 7 5 9 4 0 6
1 3 2 8 5 7 4 9 0 6
输出样例 2:
Merge Sort
1 2 3 8 4 5 7 9 0 6
代码:
这道题本身不是很难,难在排序算法有点忘记了,需要回头看书复习一会儿。
程序还有优化的空间,今天先做到这儿。
//判断一个中间序列是 插入排序 还是 归并排序。
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
#include<cmath>
//设置全局变量
const int maxn=110;
//直接插入排序
void insertsort(int r[],int n){
int i,j,temp,k;
for(i=1;i<n;i++){
temp=r[i];
j=i-1;
while(j>=0&&r[j]>temp){
r[j+1]=r[j];
j--;
}
r[j+1]=temp;
}
}
//二路归并排序
void mergesort(int r[],int countt,int n){
double k=pow(2.0,(double)countt);
for(int i=0;i<n;i+=(int)k){
if(i+(int)k>n) sort(r+i,r+n);
else sort(r+i,r+i+(int)k);
}
}
//定义比较两个数列是否相同的函数
bool compare(int a[],int b[],int n){
for(int i=0;i<n;i++){
if(a[i]!=b[i]) return false;
}
return true;
}
int main()
{
int n,i,j;
scanf("%d",&n);
int a[maxn],b[maxn],c[maxn];
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
for(i=0;i<n;i++){
c[i]=a[i];
}
for(i=0;i<n;i++){
scanf("%d",&b[i]);
}
//判断是否是 插入排序的中间序列
for(i=1;i<=n-2;i++){
insertsort(a,i+1);
if(compare(a,b,n)==true){
printf("Insertion Sort\n");
insertsort(a,i+2);
for(j=0;j<n;j++){
printf("%d",a[j]);
if(j!=n-1) printf(" ");
}
return 0;
}
}
//判断是否是 归并排序的中间序列
//数列a已经改变,用数列c
for(i=1;pow(2.0,(double)i)<=(double)n;i++){
mergesort(c,i,n);
if(compare(c,b,n)==true){
printf("Merge Sort\n");
mergesort(c,i+1,n);
for(j=0;j<n;j++){
printf("%d",c[j]);
if(j!=n-1) printf(" ");
}
return 0;
}
}
printf("Neither is true!\n");//除非两种排序都不是,才会printf这句,一般来说,程序走不到这里。
return 0;
}
【c++】&spm=1001.2101.3001.5002&articleId=127920828&d=1&t=3&u=ae68658d5fc4461ebdc266e0ba002309)
1540

被折叠的 条评论
为什么被折叠?



