深度学习在机器翻译中的应用:使用Spring Boot与DL4J实现自然语言处理

36 篇文章 0 订阅 ¥199.90 ¥299.90

在这里插入图片描述

1. 系统架构

在构建机器翻译系统之前,首先需要了解系统的整体架构。我们的系统主要由以下几个模块组成:

  • 数据预处理模块
  • 模型训练模块
  • 服务接口模块
  • 前端展示模块
1.1 数据预处理模块

数据预处理是自然语言处理中的关键步骤。我们需要从文本数据中提取有用的信息。这个模块主要包括:

  • 文本清洗:去除特殊字符、标点符号、HTML标签等。
  • 分词:将句子切分成单词或词组。在中文中,我们可以使用分词工具,如Jieba。
  • 向量化:将文本转换为计算机可以理解的数字形式。常用的方法有词袋模型(Bag of Words)和词嵌入(Word Embeddings)。

示例:假设我们的源语言是英文,目标语言是中文,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空间机器人

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值