题意:给定 一个 n × m 的矩阵,矩阵中的元素由 R,L,X 三种;两个人轮流玩游戏,选择当前未被标记的点
①若选择的点为L,则由此点向左下角和右上角延伸经过的所有点均被标记(直到达到边界或者碰上被标记的点为止);
②若选择的点为R,则由此点向左上角和右下角延伸经过的所有点均被标记(直到达到边界或者碰上被标记的点为止);
③若选择的点为X,则相当于这个点同时是L和R,进行操作①和②;
最后无点可选的算做输家,问先手是否必赢;
分析:可以看出,只要选择了点 L 或 R,就将问题分成了两个子问题,选择了 X,就将问题分成了四个子问题,满足SG的思想,然后我们把矩形顺时针旋转45°并进行扩充

然后 L 就相当于横切,R相当于纵切,X即横切+纵切,而且不必真的构建一个这样的扩充矩形,只需要把原来的(x,y)映射成(x+y,x-y+m)这样就可以看成扩充了,然后其实就可以写SG了,但是这里还存在一个优化,根据一个点横坐标纵坐标和的奇偶性把矩阵分开,那么两者选择互不相干,为什么,因为一个点,它本身和它对角的所有坐标的奇偶性是一致的;
代码:
#include<set>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N = 40+5;
int n,m,sg[N][N][N][N][2];
char s[N][N];
int SG(int x1,int y1,int x2,int y2,int f){
if(x1>x2||y1>y2) return 0;
if(

最低0.47元/天 解锁文章


被折叠的 条评论
为什么被折叠?



