常用传统图像处理方法梳理

本文详细介绍了图像处理中的关键方法,包括颜色空间、图像滤波(高斯滤波、均值滤波、中值滤波、双边滤波和边缘检测算子Sobel及Canny)、HoG特征与SIFT特征提取,以及霍夫变换在直线和圆检测中的应用。这些技术在图像分析和计算机视觉中起到重要作用,是理解和应用图像处理的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 颜色空间

常见颜色空间:

  • RGB
  • HSI(色调、饱和度、明度)
  • YUV
  • CMYK

OpenCV为什么是BGR?

  • 早期的bmp等图像格式中BGR更广泛一点,所以opencv也遵循这个格式

  • BGR与RGB格式转换

    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    # 或
    img_rgb = img[:,:,::-1] # 因为img[:,:,0]为b分量, img[:,:,1]为g,img[:,:,2]为r分量
    

    注:python的list中,listA[i:j:s],表示从i到j的左闭右开区间,s表示步长。

  • opencv中通道数是在最后面,也就是上面的不管rgb还是bgr都是[h,w,c]的格式,有时候需要将通道数放到前面,使用transpose方法

    img_channel_first = img.transpose((2,0,1))
    

1. 图像滤波

(1) 图像滤波

  • 图像噪声

    • 高斯噪声,噪声的概率密度函数服从高斯分布,一般来自于器件的热噪声、电路噪声;高斯白噪声,功率谱密度均匀分布(高斯滤波)
    • 椒盐噪声,亮暗点噪声(中值滤波)
    • 泊松噪声,概率密度函数服从泊松分布(泊松分布适合于描述单位时间内随机事件发生的次数的概率分布),一般也是由于器件的光电转换过程导致
    • 量化噪声
  • 滤波器

    (一般在计算模板的时候就对系数和进行归一化处理了,因此使用模板的时候只需要求加权和)

    • 高斯滤波器:根据高斯函数的形状来选择权值的线性平滑滤波器

    • 均值滤波:窗口下取均值

    • 中值滤波:窗口下取中位数

    • 双边滤波:非线性滤波,具有保持边缘、平滑降噪的功能。

      ​ 对一幅图像而言,边缘区域像素值变化快,而非边缘区域像素变化比较平坦。高斯滤波并没有对这两种区域加以区分,因此会导致边缘模糊。若要比较好的保留图像边缘,就必须引入一个变量去衡量当前像素变化的剧烈程度,所以双边滤波其实就是引入了这样一个图像像素域的核。原来的高斯滤波中就是一个空间域的核,它是一个二维的高斯函数;像素域核就是衡量像素变化剧烈程度的函数。它们俩共同作用的结果:在图像的平坦区域,像素值变化很小,对应的像素范围域权重接近于1,此时空间域权重起主要作用,相当于进行高斯模糊;在图像的边缘区域,像素值变化很大,像素范围域权重变大,从而保持了边缘的信息

      dst = cv2.bilateralFilter(src=image,d=0,sigmaColor=100,sigmaSpace=15)
      

      ​ 其模板权重的计算方法:先根据sigmaSpace核sigmaColor计算各自的高斯函数下的权重,然后在对应像素位置将二者的乘积作为模板权重。之后就是像一般的卷积那样像素值加权求和。

      ​ Ref:双边滤波原理

(2) 图像增强——常见边缘检测算子

  • sobel

    边缘检测,边缘是像素值变化比较剧烈的位置,在连续函数上就是求梯度,在离散的数字图像上就是求差分。sobel算子就是求的水平或者竖直方向的一阶差分,同时带有一定的平滑效果。

    下图给出了两种sobel算子的功能。从本质上来看,上面这个sobel算子是水平差分+垂直平滑的结果,下面这个是水平平滑+垂直差分的结果。

    【优点】计算简单,速度快

    【缺点】计算方向单一,只有水平和垂直方向,难以应对复杂纹理;根据差分结果直接用单一阈值进行判断是否边缘像素,对有的噪声情况无法进行很好的处理

    img

  • canny

    虽然比较古老,但却是传统图像处理中,边缘检测的首选,性能

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值