MediaPipe基础(9)手指计数

本文介绍了如何使用Mediapipe库实现手部追踪模块,通过检测手势和手指位置,实现实时的手指计数功能,适用于0到5的计数,并展示了如何在视频流中应用这一技术。
摘要由CSDN通过智能技术生成

本文实现手指计数,可以实现0~5的计数。

链接:https://pan.baidu.com/s/1WxthjxuumWyZ3XISAoD8ZQ 
提取码:123a
# HandTrackingModule.py
import cv2
import mediapipe as mp
import time
class handDetector():
    def __init__(self, mode=False, maxHands=2, detectionCon=0.5, trackCon=0.5):
        self.mode = mode
        self.maxHands = maxHands
        self.detectionCon = detectionCon
        self.trackCon = trackCon
        self.mpHands = mp.solutions.hands
        self.hands = self.mpHands.Hands(self.mode, self.maxHands,
                                        self.detectionCon, self.trackCon)
        self.mpDraw = mp.solutions.drawing_utils
    def findHands(self, img, draw=True):
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        self.results = self.hands.process(imgRGB)
        # print(results.multi_hand_landmarks)
        if self.results.multi_hand_landmarks:
            for handLms in self.results.multi_hand_landmarks:
                if draw:
                    self.mpDraw.draw_landmarks(img, handLms,
                                               self.mpHands.HAND_CONNECTIONS)
        return img
    def findPosition(self, img, handNo=0, draw=True):
        lmList = []
        if self.results.multi_hand_landmarks:
            myHand = self.results.multi_hand_landmarks[handNo]
            for id, lm in enumerate(myHand.landmark):
                # print(id, lm)
                h, w, c = img.shape
                cx, cy = int(lm.x * w), int(lm.y * h)
                # print(id, cx, cy)
                lmList.append([id, cx, cy])
                if draw:
                    cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)
        return lmList
def main():
    pTime = 0
    cTime = 0
    cap = cv2.VideoCapture("fingercounter/Fingercounter")
    detector = handDetector()
    while True:
        success, img = cap.read()
        img = detector.findHands(img)
        lmList = detector.findPosition(img)
        if len(lmList) != 0:
            print(lmList[4])
        cTime = time.time()
        fps = 1 / (cTime - pTime)
        pTime = cTime
        cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3,
                    (255, 0, 255), 3)
        cv2.imshow("Image", img)
        cv2.waitKey(1)
if __name__ == "__main__":
    main()
# FingerCounter.py
import cv2
import time
import os
import HandTrackingModule as htm
wCam, hCam = 640, 480
cap = cv2.VideoCapture(1)
cap.set(3, wCam)
cap.set(4, hCam)
folderPath = "FingerImages"
myList = os.listdir(folderPath)
print(myList)
overlayList = []
for imPath in myList:
    image = cv2.imread(f'{folderPath}/{imPath}')
    # print(f'{folderPath}/{imPath}')
    overlayList.append(image)
print(len(overlayList))
pTime = 0
detector = htm.handDetector(detectionCon=0.75)
tipIds = [4, 8, 12, 16, 20]
while True:
    success, img = cap.read()
    img = detector.findHands(img)
    lmList = detector.findPosition(img, draw=False)
    # print(lmList)
    if len(lmList) != 0:
        fingers = []
        # Thumb
        if lmList[tipIds[0]][1] > lmList[tipIds[0] - 1][1]:
            fingers.append(1)
        else:
            fingers.append(0)
        # 4 Fingers
        for id in range(1, 5):
            if lmList[tipIds[id]][2] < lmList[tipIds[id] - 2][2]:
                fingers.append(1)
            else:
                fingers.append(0)
        # print(fingers)
        totalFingers = fingers.count(1)
        print(totalFingers)
        h, w, c = overlayList[totalFingers - 1].shape
        img[0:h, 0:w] = overlayList[totalFingers - 1]
        cv2.rectangle(img, (20, 225), (170, 425), (0, 255, 0), cv2.FILLED)
        cv2.putText(img, str(totalFingers), (45, 375), cv2.FONT_HERSHEY_PLAIN,
                    10, (255, 0, 0), 25)
    cTime = time.time()
    fps = 1 / (cTime - pTime)
    pTime = cTime
    cv2.putText(img, f'FPS: {int(fps)}', (400, 70), cv2.FONT_HERSHEY_PLAIN,
                3, (255, 0, 0), 3)
    cv2.imshow("Image", img)
    cv2.waitKey(1)
Python中配置Mediapipe库用于手指计数,首先需要安装Mediapipe库以及它的依赖。Mediapipe是一个开源的计算机视觉库,主要用于实时人体关键点检测和分析。 以下是基本步骤: 1. **安装库**: 使用pip安装Mediapipe: ``` pip install mediapipe ``` 2. **下载模型**: Mediapipe手指计数功能通常包含在pose estimation模块中,你可以选择下载预训练的模型数据文件,如`mediapipe/models/face_mesh/face_mesh.tflite` 和 `mediapipe/graphs/hand_tracking/hand_tracking_desktop_live_graph.pbtxt`。 3. **设置环境**: 导入所需的Mediapipe模块,并创建一个PoseEstimationHelper类实例,这将负责处理图像和识别手势: ```python import cv2 from mediapipe.python.solutions.drawing_utils import DrawingUtils from mediapipe.python.solutions.pose import Pose class FingerCounter: def __init__(self): self.pose = Pose() self.draw_helper = DrawingUtils() # 初始化手指计数器 finger_counter = FingerCounter() ``` 4. **读取并处理视频**: 遍历摄像头输入或视频流,对每一帧应用手部跟踪模型,然后统计每个手指的关键点位置: ```python cap = cv2.VideoCapture(0) # 使用摄像头 while True: ret, frame = cap.read() if not ret: break results = finger_counter.pose.process(frame) if results.multi_hand_landmarks: # 对于每只手... for hand_landmarks in results.multi_hand_landmarks: # 计算手指位置和状态,这里只是一个示例,实际需要根据landmark的位置判断 fingers_status = self.count_fingers(hand_landmarks) # 绘制结果 finger_counter.draw_helper.draw_landmarks(frame, hand_landmarks) cv2.imshow(&#39;Hand Tracking&#39;, frame) key = cv2.waitKey(1) # 添加键盘事件控制,例如 esc退出程序 if key == 27: # Esc键 break cap.release() cv2.destroyAllWindows() ``` 5. **自定义手指计数函数**: ```python def count_fingers(hand_landmarks): finger_count = 0 for id, landmark in enumerate(hand_landmarks.landmark): if id >= 8: # 假设我们关心的是从大拇指到小指 # 根据landmark的位置判断是否是开放的手指 # 这里只是一个简单的示例,实际需根据landmark坐标计算角度 if landmark.y > hand_landmarks.landmark[8].y: finger_count += 1 return finger_count ``` 注意:以上代码只是一个基本框架,实际应用中你需要根据Mediapipe提供的hand landmarks精确计算手指是否张开,这可能涉及到一些数学计算或机器学习模型的辅助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值