Python(三)基本数据类型-2

1.List

List(列表)是Python 中使用最频繁的数据类型。列表可以完成大多数集合类的数据结构实现。列表中元素的类型可以不相同,它支持数字,字符串甚至可以包含列表(所谓嵌套)。列表是写在方括号[]之间、用逗号分隔开的元素列表。和字符串一样,列表同样可以被索引和截取,列表被截取后返回一个包含所需元素的新列表。

C:\Users\DELL>python
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> list = [0,'1', Turn ,1.0]
>>> list[0]
0
>>> len(list)
4
>>> list[0:3]
[0, '1', True]
>>> list + list
[0, '1', True, 1.0, 0, '1', True, 1.0]
>>> list *2
[0, '1', True, 1.0, 0, '1', True, 1.0]
>>> alist = [0,1,3,list]
>>> alist
[0, 1, 3, [0, '1', True, 1.0]]

注意:

(1)List写在方括号之间,元素用逗号隔开。

(2)和字符串一样,list可以被索引和切片。

(3)List可以使用+操作符进行拼接。

(4)List中的元素是可以改变的。

(5)不支持与或非运算

2.Tuple

元组(tuple)与列表类似,不同之处在于元组的元素不能修改。元组写在小括号 () 里,元素之间用逗号隔开。

>>> tuple = (0,True,1.0)
>>> tuple(0)
>>> tuple[0]
0
>>> tuple[0:2]
(0, True)
>>> len(tuple)
3
>>> tuple[0] = 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

注意:

(1)与字符串一样,元组的元素不能修改。虽然tuple的元素不可改变,但它可以包含可变的对象,比如list列表。

(2)元组也可以被索引和切片,方法一样。

(3)注意构造包含0或1个元素的元组的特殊语法规则。

(4)元组也可以使用 + 或 * 操作符进行拼接。

3.Set

集合(set)是由一个。合的事物或对象称作元素或是成员。基本功能是进行成员关系测试和删除重复元素。

可以使用大括号{}或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 {},因为 {} 是用来创建一个空字典。

>>> set = {0,'1',True}
>>> set
{0, True, '1'}
>>> a = set('abracadabra')
>>> b = set('abavjfkgjad')
>>> a-b     # a和b的差集
{'r', 'c'}
>>> a | b    # a和b的并集
{'d', 'k', 'b', 'r', 'c', 'j', 'f', 'v', 'a', 'g'}
>>> a & b     # a和b的交集
{'d', 'b', 'a'}
>>> a ^ b    # a和b中不同时存在的元素
{'k', 'r', 'c', 'j', 'f', 'v', 'g'}

4.字典(dictionary)

字典(dictionary)是Python中另一个非常有用的内置数据类型。

列表是有序的对象集合,字典是无序的对象集合。两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。

字典是一种映射类型,字典用"{ }"标识,它是一个无序的键(key) : 值(value)对集合。

键(key)必须使用不可变类型。

在同一个字典中,键(key)必须是唯一的。

字典创建:

>>> d = {"a":1,"b":2,"c":3}
>>> d
{'a': 1, 'b': 2, 'c': 3}
>>> e = dict([('Runoob', 1), ('Google', 2), ('Taobao', 3)])
>>> e
{'Runoob': 1, 'Google': 2, 'Taobao': 3}
>>> f = {x:x**2 for x in (2, 4, 6)}
>>> f
{2: 4, 4: 16, 6: 36}
>>> q = dict(Runoob=1, Google=2, Taobao=3)
>>> q
{'Runoob': 1, 'Google': 2, 'Taobao': 3}

字典操作:

>>> tinydict = {'name':'job','age':18,'sex':'nan'}
>>> tinydict['name']
'job'
>>> tinydict
{'name': 'job', 'age': 18, 'sex': 'nan'}
>>> tinydict.keys()
dict_keys(['name', 'age', 'sex'])
>>> tinydict.values()
dict_values(['job', 18, 'nan'])

 

【为什么学习数据挖掘】       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 【超实用的课程内容】      本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。 本课程分为三大部分: 基础知识篇:主要讲解数据挖掘这项技能的基本工作流程和介绍和入门必须的基本技能Python语言的入门,带领大家了解数据挖掘的常见操作和基础知识。 数据采集篇:学习如何解决数据挖掘的数据来源问题,读取各类型不同的数据包括CSV,excel,MySQL进行数据采集的交互。 数据探索篇:本篇主要解决数据的预处理保证数据的质量并用常见数据挖掘算法进行特征提取,分析数据背后隐含的信息。 【报名须知】 课程采取录播模式,课程永久有效,可无限次观看 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 【如何开始学习?】 PC端:报名成功后可以直接进入课程学习 移动端:下载CSDN学院或CSDN
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页