http://acm.hdu.edu.cn/showproblem.php?pid=5446
Problem Description
On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.Output
For each test case output the correct combination on a line.
Sample Input
1 9 5 2 3 5
Sample Output
6
题意:
求一个组合数取模,只不过这个模是素数的乘积,得我们自己算,并且题目给出是哪些素数
分析:
观察到数据范围较大,直接求组合数无法解决(会爆)。组合数取模可以直接用卢卡斯定理,观察数据范围可以看到模数太大,不好处理,可以想到是分别对素数取模,再用中国剩余定理求出同余式的被模数
#include<cstdio>
using namespace std;
typedef long long ll;
ll p[16],r[15];
ll mul(ll a,ll b,ll p)//快速乘
{
ll ret=0;
while(b)
{
if(b&1) ret=(ret+a)%p;
a=(a+a)%p;
b>>=1;
}
return ret;
}
ll fact(ll n,ll p)//数的阶乘
{
ll ret=1;
for(ll i=1;i<=n;i++) ret=ret*i%p;
return ret;
}
void ex_gcd(ll a,ll b,ll &x,ll &y,ll &d)//扩展欧几里得
{
if(!b){d=a,x=1,y=0;}
else{
ex_gcd(b,a%b,y,x,d);
y-=x*(a/b);
}
}
ll inv(ll t,ll p)//逆元
{
ll d,x,y;
ex_gcd(t,p,x,y,d);
return d==1?(x%p+p)%p:-1;
}
ll comb(ll n,ll m,ll p)//组合数
{
if(m<0||m>n) return 0;
return fact(n,p)*inv(fact(m,p),p)%p*inv(fact(n-m,p),p)%p;
}
ll lucas(ll n,ll m,ll p)//卢卡斯求组合数
{
return m?lucas(n/p,m/p,p) * comb(n%p,m%p,p)%p:1;
}
ll china(ll n,ll *a,ll *m)//中国剩余定理
{
ll M=1,ret=0;
for(ll i=0;i<n;i++) M*=m[i];//把模数乘起来
for(ll i=0;i<n;i++){
ll w=M/m[i];
ret=(ret+mul(w*inv(w,m[i]),a[i],M))%M;
}
return (ret+M)%M;
}
int main()
{
ll T,n,m,k;
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=0;i<k;i++)
{
scanf("%lld",&p[i]);
r[i]=lucas(n,m,p[i]);
}
ll ans=china(k,r,p);
printf("%lld\n",ans);
}
}

探讨了在大规模数据下如何高效求解组合数取模问题,尤其当模数为多个素数乘积时,利用卢卡斯定理与快速乘法结合中国剩余定理(CRT)求解的方法。
2481

被折叠的 条评论
为什么被折叠?



